

Atomized Nb powder for superconducting

<u>ULVAC Japan</u> Ryota Nakamura, Tomohiro Nagata, Seiichi Shinozawa <u>KEK</u> Takeshi Dohmae

> 5/Feb/2020 TTC2020

Investigation of Nb atomized powder

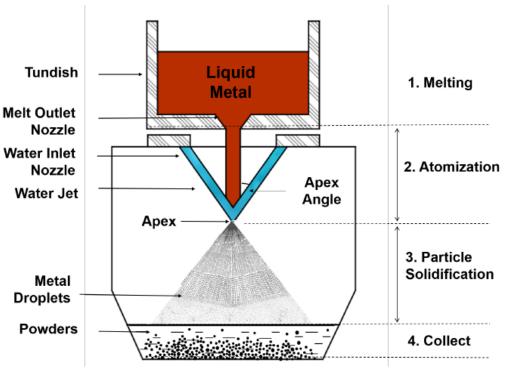
Complicated shape parts made by Nb (Nb alloy) are required for SRF accelerator components, ex. HOM coupler.

Additive manufacturing (3D-printing) can produce such complicated parts easier. Furthermore, higher performance components can be designed/produced by additive manufacturing.

→ULVAC investigates atomized Nb powder.

Request

- ✓ High purity: RRR ~ 250 (OR more)
- ✓ Good sphere-shape
 More dense after melting
- ✓ Good grain size distribution Convenient to use different procedure (ex. EBM & LBM)
- ✓ No defect on the grain surface



Example of atomization process

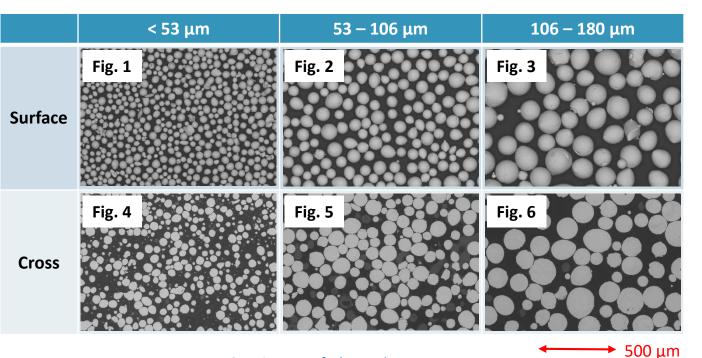
- 1. Melted metal is pulled into tundish
- 2. Melted metal is coming out from nozzle
- 3. High pressure gas/air/water is splayed to melted metal.
- 4. Sort powders by size

Can process good sphere-shape →Suitable for additive manufacturing

ULVAC case Splayed gas: Ar Chamber is vacuumed and Ar purged

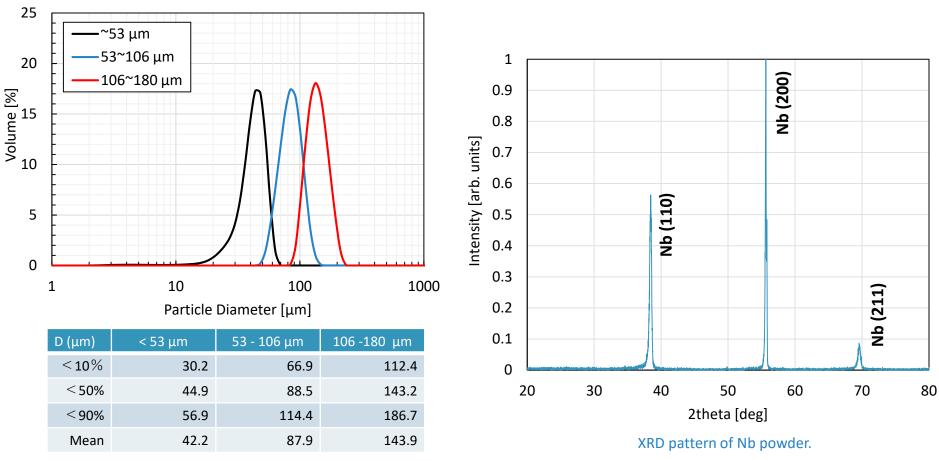
Example of atomization process


Z. Jiao et al., "Influence of Apex Angle and Nozzle Design on Energy and Momentum Transfer During the Water Atomization Process", 2017



Classified Nb Powder. (Diameter: 53 - 106 μm)

Example of Bad powder


SEM images of Nb Powder. Fig. 1-3: Surface morphology Fig. 4-6: Polished cross section

Each powder is well separated and has good sphere-shape

ULVAC Confidential

Powder characteristic

Particle size distributions of Nb powder *Method: Laser diffraction analysis

- Particles are well sorted by size.
- Only Nb is observed by XRD analysis.

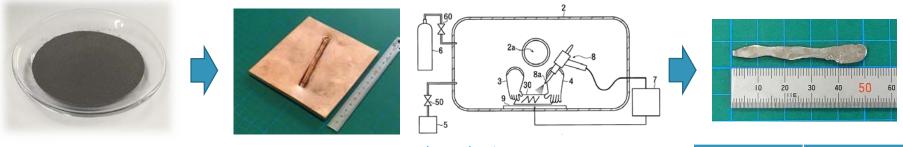
ULVAC Confidential

Chemical components

Element	Ingot	Feedstock	Powder	Ref. ASTM type5 Grade
AI	Not Measured	<10 ppm wt.	<10 ppm wt.	50 ppm wt.
Si	<10 ppm wt.	<10 ppm wt.	10 ppm wt.	50 ppm wt.
Ti	<5 ppm wt.	<5 ppm wt.	<5 ppm wt.	50 ppm wt.
v	Not Measured	<10 ppm wt.	<10 ppm wt.	_
Cr	Not Measured	<10 ppm wt.	<10 ppm wt.	_
Mn	Not Measured	<5 ppm wt.	<5 ppm wt.	_
Fe	<10 ppm wt.	<10 ppm wt.	<10 ppm wt.	50 ppm wt.
Ni	<10 ppm wt.	<10 ppm wt.	<10 ppm wt.	30 ppm wt.
Cu	Not Measured	<10 ppm wt.	<10 ppm wt.	_
Zr	<10 ppm wt.	<10 ppm wt.	<10 ppm wt.	100 ppm wt.
Мо	<10 ppm wt.	10 ppm wt.	10 ppm wt.	
Hf	Not Measured	<10 ppm wt.	<10 ppm wt.	—
Та	60 ppm wt.	60 ppm wt.	70 ppm wt.	1000 ppm wt.
w	10 ppm wt.	10 ppm wt.	70 ppm wt.	70 ppm wt.
В	Not Measured	<2 ppm wt.	<2 ppm wt.	_
Со	Not Measured	<10 ppm wt.	<10 ppm wt.	—
Ве	Not Measured	<10 ppm wt.	<10 ppm wt.	—
Mg	Not Measured	<10 ppm wt.	<10 ppm wt.	-

*Method: ICP-AES (Tungsten due to cross-contamination during atomization)

Only Few contamination during atomization is observed → <u>Still better than ASTM type5 grade</u>


ULVAC Confidential

Chemical components 2 & RRR

	Ingot	Feedstock	Powder (< 53 μm)	Powder (53 - 100 μm)	Powder (106 - 180 μm)	Ref. ASTM type5
Oxygen	< 10 ppm wt.	< 10 ppm wt.	920 ppm wt.	490 ppm wt.	360 ppm wt.	40 ppm wt.
Nitrogen	< 10 ppm wt.	< 10 ppm wt.	350 ppm wt.	220 ppm wt.	180 ppm wt.	30 ppm wt.

Chemical components (Oxygen & Nitrogen) (*Method: IGF-IRA)

RRR	samp	le pro	duction
-----	------	--------	---------

Shape	RRR
Ingot	348
Feedstock	306
Bar	8.4

- Oxygen and Nitrogen contents increase during atomization.
- RRR of bar is much worse than original material

- Need enough degassing of chamber for atomization
- Produce RRR sample by EBW

Future plan

Collaboration scheme

- Powder production, powder analysis (chemical components, RRR, etc.) :ULVAC
- 3D printing: under consideration
- Characteristic evaluation (RF characteristic): KEK

Target

Parts for HOM coupler

ULVAC contact

Toshifumi Yamasaki toshifumi_yamasaki@ulvac.com

