#### TESLA TECHNOLOGY COLLABORATION 2020

WG4: New Fabrication Methods and Alternative Cooling Techniques

CERN, Geneva 24 April - 4 May, 2013

# An effective thermal link for cooling cryo-magnetic systems : The Pulsating Heat Pipe (PHP)

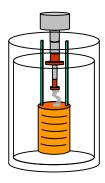
**Bertrand Baudouy** 

bertrand.baudouy@cea.fr

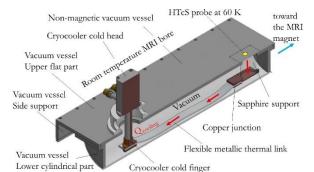
#### Outline

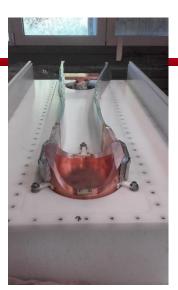
- Cryo-cooling and passive thermal links
- Pulsating heat pipes
- Cryogenic Pulsating heat pipes
- Thanks to people involve or involved at CEA Paris-Saclay
  - Maria Barba (maria.asuncion.barba.higueras@cern.ch)
  - Antoine Bonelli
  - Romain Bruce
  - Aurélien Four
  - Clément Hilaire




## Cryo-cooling and Thermal links (1/2)

- Cooling with cryocoolers
  - Importance of the thermal link between the cold source and the system
  - Indirect cooling ( $\Sigma\Delta T$  due to thermal contact resistance, ...)
- Advantages
  - Easy implementation (no liquefaction unit, no heat exchanger, no transfer line, ...)
  - Easy working conditions (cryogenist-free system)
- Disadvantages
  - Limited cooling power thermal design must be accurate
    if the heat load to be extracted exceeds the cryocooler power capacity then T
  - GM Cryocooler characteristics
    - 4 K two-stage cryocooler  $2^{nd}$  stage 1.8 W at 4.2 K and  $1^{st}$  stage 45 W at 50 K
    - 20 K two-stage cryocooler 2<sup>nd</sup> stage 9,5 W at 20 K and 1<sup>st</sup> stage 75 W at 60 K
    - 77 K single stage cryocooler; several 100 W!
  - A point-source of cold (35 cm<sup>2</sup> to 85 cm<sup>2</sup>)
    - A distribution of cooling power must be implemented
  - Maintenance (20000 hours)





## Cryo-cooling and Thermal links (2/2)

#### Conductive thermal links

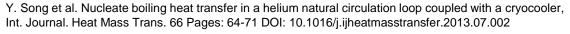


- HTS coil @ 60 K for MRI
- Thermal contact with silver paint and indium
- 7 kg 5N aluminum bars





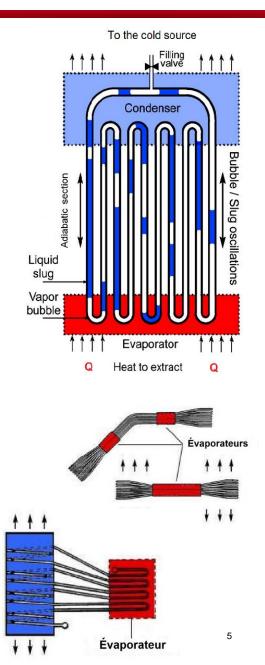
G. Authelet et al., All polymer cryogen free cryostat for mu-MRI application at clinical field, IOP Conference Series-Materials Science and Engineering, Volume: 502, Article Number: 012156, DOI: 10.1088/1757-899X/502/1/012156


• Gravity assisted two-phase fluid thermal link

- Circulation loop coupled to a cryocooler
- Vapor re-condensed in an upper reservoir
- High heat transfer in boiling convection or single phase flow
- "Faster" heat transfer than conductive link
- Autonomous cooling method for cryo-systems






4.2 K loop for the Wave vectorial magnet at CEA Paris-Saclay



## Pulsating heat pipes (1/2)

- PHP = Pulsating Heat Pipe or Oscillating Heat Pipe
  - Oscillating two-phase heat pipe
- Passive heat exchanger made of a plain capillary tube
  - No additional structure inside the tube
- Tube is arranged in several U-turn loops between a evaporator and a condenser separated by an adiabatic section
  - Simple and versatile design
- Tube partially filled with the working fluid in a two-phase state close to the saturation conditions
- Tube diameter designed  $\rightarrow$  Dominant capillary forces
  - Gravity independent
- Random distribution of liquid and vapor structures





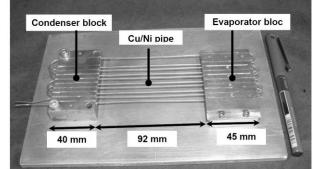
## Pulsating heat pipes (2/2)

- Oscillations of liquid slugs and vapor bubbles
  - Capillary forces create a separation of liquid slugs and vapor plugs
  - Pressure change due to expansion and contraction at phase transition
    - Vaporization in the evaporator creates overpressure
    - Movement of the vapor plugs surrounded by a liquid film
    - · Liquefaction of the vapor in the condenser
- Combination of phase change and advection heat transfer
  - Advection: sensible heat carried mainly by the liquid
  - Phase change: latent heat due to all phase changes between the two phases and with the condenser or evaporator
- Used in numerous domains at different temperatures
  - Electronics
  - Space
  - ...

Khandekar, Sameer et al. "Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling." (2003).



## Cryogenic pulsating heat pipes (1/4)


- Chandratilleke et al.
  - Round PHP, Ø 0.5 mm SS tubes, 10 turns
  - Condenser and evaporator section : 100 mm and 30 mm
  - Adiabatic section: 516 mm long



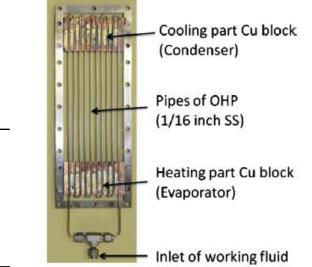
| Fluid | Diameter | Heat input | Condenser       | Evaporator      | Keff     |
|-------|----------|------------|-----------------|-----------------|----------|
|       | (mm)     | (W)        | temperature (K) | temperature (K) | (kW/m.K) |
| He    | 0.5      | 0.2        | 4.2             | 4.6             | 12.9     |

R. Chandratilleke, H. Hatakeyama, and H. Nakagome. Development of cryogenic loop heat pipes. Cryogenics, 38(3):263-269, 1998

- Bonnet et al.
  - Flat PHP, Ø 0.5 mm Cu-Ni tubes, 5 turns for helium
  - Condenser and evaporator section : 45 mm
  - Adiabatic section: 92 mm long



| Fluid | Diameter | Heat input | Condenser       | Evaporator      | Keff     |
|-------|----------|------------|-----------------|-----------------|----------|
|       | (mm)     | (mW)       | temperature (K) | temperature (K) | (kW/m.K) |
| He    | 0.5      | 15-145     | 4.2             | 4.6             | 18.7     |


F. Bonnet, Ph. Gully, and V. Nikolayev. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system. AIP Conference Proceedings, 1434, 2012.



### Cryogenic pulsating heat pipes (2/4)

- Natsume et al.
  - Flat PHP, Ø 0.78 mm SS tubes, 10 turns
  - Condenser and evaporator section : 30 mm long
  - Adiabatic section: 100 mm long

| Fluid | Heat input<br>(W) | Condenser<br>temperature (K) | Evaporator<br>temperature (K) | Keff<br>(kW/m.K) |
|-------|-------------------|------------------------------|-------------------------------|------------------|
| H2    | 0-1.2             | 17-18                        | 19-27                         | 0.5-3.5          |
| Ne    | 0-1.5             | 26-27                        | 28-34                         | 1-8              |
| N2    | 0-7               | 67-69                        | 67-91                         | 5 -18            |



K. Natsume, Heat transfer performance of cryogenic oscillating heat pipes for effective cooling of superconducting magnets, Cryogenics, Volume 51, Issue 6, June 2011, Pages 309-314

- Fonseca et al.
  - Round Flat PHP, Ø 0.5 mm SS tubes, 32 turns
  - Condenser and evaporator section : 75 and 133 mm long
  - Adiabatic section: 90 mm long

|                     | Brass Shims<br>Hose Clamps |                      |
|---------------------|----------------------------|----------------------|
| Lc                  | La                         | Lh                   |
| (Condenser Section) | (Adiabatic Section)        | (Evaporator Section) |

| Fluid | Heat input | Condenser       | Evaporator      | Keff     |
|-------|------------|-----------------|-----------------|----------|
|       | (mW)       | temperature (K) | temperature (K) | (kW/m.K) |
| He    | 3-86       | 4.2             | ?               | 1.8-2.45 |

Luis Diego Fonseca, Franklin Miller, John Pfotenhauer. A Helium Based Pulsating Heat Pipe for Superconducting Magnets. AIP Conference Proceedings 1573, 2014, 28.



#### Cryogenic pulsating heat pipes (3/4)

#### • Xu D. *et al.*

- Flat PHP, Ø 0.5 mm SS tubes, 8 turns
- Condenser and evaporator section : 50 mm long
- Adiabatic section: 100 mm long

| Fluid | Heat input<br>(mW) | Condenser<br>temperature (K) | Evaporator<br>temperature (K) | Keff<br>(kW/m.K) |
|-------|--------------------|------------------------------|-------------------------------|------------------|
| He    | 72                 | 4.2                          | 4.7                           | 9.5              |
|       |                    |                              |                               |                  |

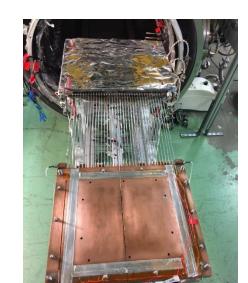


Xu, D at al. Experimental investigation on the thermal performance of helium based cryogenic pulsating heat pipe, Experimental Thermal And Fluid Science, Volume: 70, Pages: 61-68, 2016, DOI: 10.1016/j.expthermflusci.2015.08.024

- Li M. et al.
  - 3 PHP, Ø 0.5 mm SS tubes, 48 turns
  - Condenser and evaporator section : 50 mm long
  - Adiabatic section: 100 mm long

| Fluid | Heat input | Condenser       | Evaporator      | Keff     |
|-------|------------|-----------------|-----------------|----------|
|       | (mW)       | temperature (K) | temperature (K) | (kW/m.K) |
| He    | 375        | 3.4             | 4.5             | 5        |

Luis Diego Fonseca, Franklin Miller, John Pfotenhauer. A Helium Based Pulsating Heat Pipe for Superconducting Magnets. AIP Conference Proceedings 1573, 2014, 28.

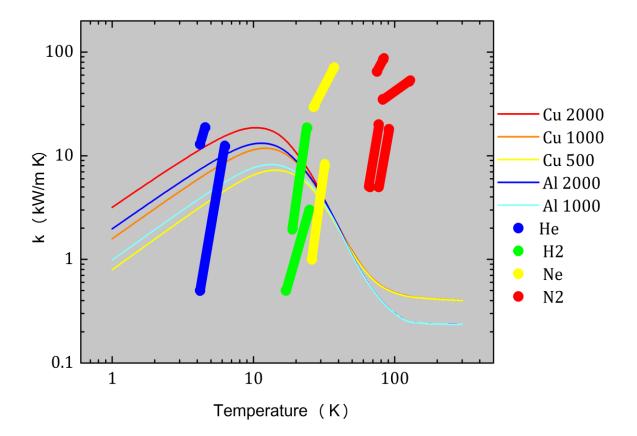





#### Cryogenic pulsating heat pipes (4/4)

- Bruce et al. and Maria Barba PhD
  - Flat PHP horizontal, Ø 1.5 mm SS tubes, 36 turns
  - Condenser and evaporator section : 330 mm long
  - Adiabatic section: 300 mm long
  - Nitrogen, neon and argon

| Fluid | Heat input<br>(W) | Condenser<br>temperature (K) | Evaporator<br>temperature (K) |
|-------|-------------------|------------------------------|-------------------------------|
| Ne    | 50                | 27                           | 37                            |
| N2    | 25                | 75                           | 82                            |






Bruce R., Thermal performance of a meter-scale horizontal nitrogen Pulsating Heat Pipe, Cryogenics, Volume: 93, Pages: 66-74, 2018, DOI: 10.1016/j.cryogenics.2018.05.007 M. Barba, Study of Meter-scale Horizontal Cryogenic Pulsating Heat Pipes, PhD Université Paris-Saclay, 18 Septembre 2019



#### Conclusion



