

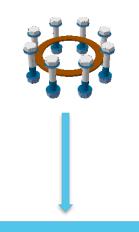
Remote handling of ultra-high vacuum beam pipe connections in high-radiation zones

Lukasz Krzempek, Cedric Garion

TTC CERN 06.02.2020


Outline

- Introduction to flanges with knife for ultra-high vacuum applications;
- Present applications of 'Quick chain clamps';
- HL-LHC connection concept for VAX;
- Summary.


ConFlat (CF) flanges for Ultra High Vacuum (UHV)

Scale: 20:1

Cross section of a typical assembly

TTC CERN 06.02.2020

Bolts + silver coated gasket OFS

- Accelerators (LHC, LEIR,...)
- Compatible with bake out

Bolts + standard gasket OFHC

Leak tests

3

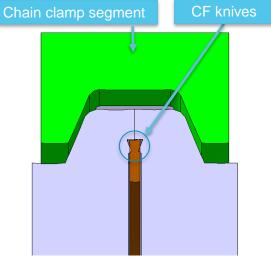
- Laboratory use
- Not compatible with bake out

Typical tightening torque – 33Nm (M8 screws for DN100)

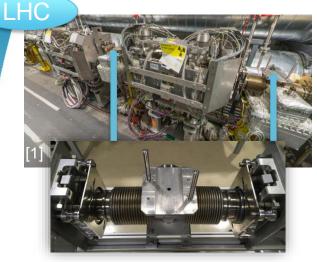
I HC PROJEC

ConFlat (CF) quick flanges for Ultra High Vacuum (UHV)

Quick CF Flanges (conical)


Quick CF Flanges

CERM



Cross section of a typical chain clamp assembly

Δ

Overview chain clamps CF		
Material	Stainless steel 1.4435	
Temperature range	-200 to +350°C	
Tightening torque	Depends on clamp size (30Nm for DN100 chain clamp) and coating conditions	
UHV	10^-12mbar	
Available sizes	DN16 – DN250	
TTC CERN 06.02.2020		L.Krzempek TE-VSC-DLM

Examples of present applications – chain clamps and chain clamp assemblies

Combination of chain clamp and bellows compression tool

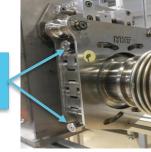
Manual handling with optimized intervention tooling

Guiding grooves

Chain clamp in open position

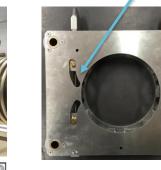
Chain clamp in close position

Dose mapping;


Mock-ups and training;

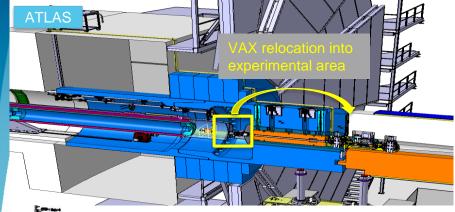
Preparation (drawings, pictures, simulations)

Tooling (electrical wrenches, extension rods, etc.)


Work planning (where and how long);

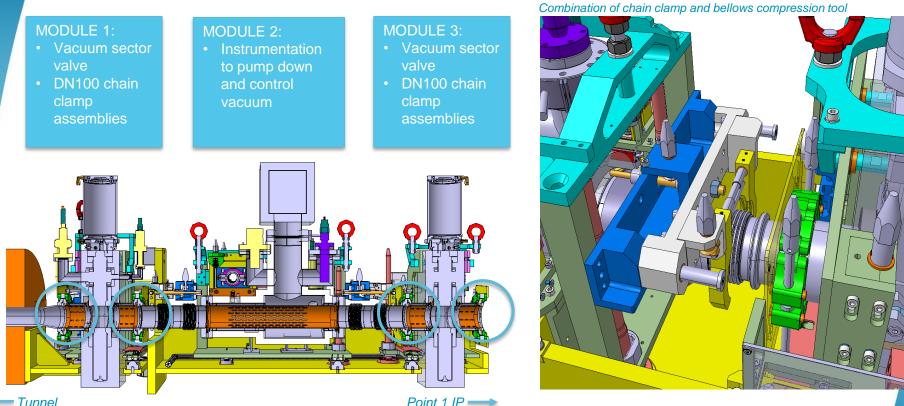
lacuum urfaces

ERI



Vacuum Assembly for eXperimental areas (VAX) in HL-LHC phase

CMS

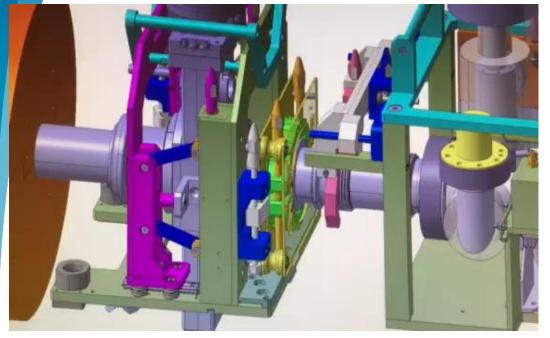


Access to VAX equipment at Point 1 (on the left) and Point 5 (on the right)

- Priority to radiation transparent aluminium;
- Transparent to a strong external magnetic field;
- Robust equipment ensuring long term system reliability;
- Quick, standard and unified connection between the VAX components;
- Vertical remote handling maintenance.

Vacuum Assembly for eXperimental areas (VAX) in HL-LHC phase

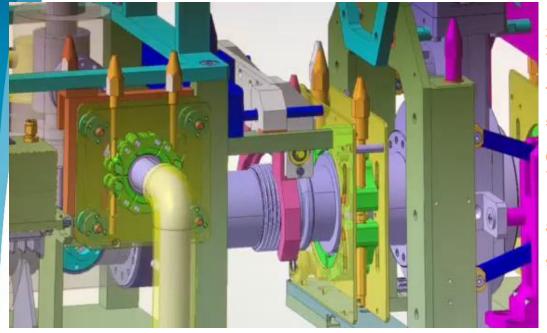
— Tunnel



TTC CERN 06.02.2020

7

VAX Module 1 maintenance - DN100 chain clamp



- . Bellow compression tool arrive to its position;
- 2. Jaws grab the collar of bellows;
- First tightening screw of chain clamp DN100 is wound out to its maximum;
- 4. Second tightening screw of chain clamp DN100 is wound out to its maximum;
- 5. Chain clamp DN100 assembly is pivoted backwards to free some space;
- 6. Bellows is compressed by compression tool;
- (Chain clamp DN100 assembly on the opposite side of Module 1 is opened by the same 3 screws (2x tightening screw and 1x pivoting screw). However, the chain clamp is hidden for the purpose of this video);
- 8. The equipment in VAX Module 1 is shifted backwards and Module 1 is ready for transport.

VAX maintenance – DN40 chain clamp

- . Bellow compression tool arrive to its position;
- 2. Jaws grab the collar of bellows;
- First tightening screw of chain clamp DN100 is wound out to its maximum;
- 4. Second tightening screw of chain clamp DN100 is wound out to its maximum;
- Chain clamp DN100 assembly is pivoted backwards to free some space;
- 6. Bellows is compressed by compression tool;
- (Chain clamp DN100 on the opposite side of Module 2 is opened in the same sequence. It is skipped for the purpose of this video)
- 8. First tightening screw of DN40 chain clamp is wound out to its maximum;
- 9. Second tightening screw of DN40 chain clamp is wound out to its maximum;
- 10. Chain clamp DN40 assembly is shifted backwards to free some space and Module 2 is ready for transport.

VAX prototype and tests

VAX chain clamps:

- Torque control;
- Tightening screw's turns control;
- Robot friendly interface;
- Minimum number of steps for the robot to operate the tightening (locking) screws;
- Chain clamp size determines number of segments (chain links) so that working conditions potentially could be affected by the gravity.

VAX Module 2 – chain clamp DN40

VAX Module interconnection – chain clamp DN100 in b.112

VAX Module 3 – chain clamp DN100 in b.186

VAX Module 1 – remote handling in b.186

VAX remote operation:

- intervention of robot (gripper or gripper with extension tool);
- Intervention of personnel from 'safe' area using extension tool.

Summary

Chain clamp connection assembly:

- Quick solution to 'bolted' connections in terms of remote handling;
- Simple and robust solution;
- Design depends on:
 - maintenance scenario;
 - available space (space required for the surrounding mechanical system);
 - Accessibility;
- Disadvantage to grease the clamp.

Remote handling:

- Cost;
- Accessibility;
- Time consuming; To remove 1 chain clamp at 5mSv/h [3]
 - Robot: 15-30 min (0µS);
 - Torque wrench: 3 minutes (250µS);
- No dose to personnel;
- Robot vs. human leverage to be always considered.

11

Thank you

lukasz.piotr.krzempek@cern.ch +41 22 76 62101 CERN 112/1-015

References

[1] J. Chauré - Intégration de blindages mobiles en LSS7 pour YETS et Long Shutdown 10th October 2018;

[2] J. Hansen – LIU PSB Work package description&Project status 18th June 2012;

[3] J. A. Ferreira – CERN experience: Vacuum design, interventions and operation in radioactive environment 22nd-24th November 2017

13