The Tokyo Regional Analysis Center Site Report

Michiru Kaneda

The International Center for Elementary Particle Physics (ICEPP), The University of Tokyo

24/Oct/2019, The 5th Asia Tier Center Forum, Mumbai, India

International Center for Elementary Particle Physics

---ilc ILC

- The Tokyo regional analysis center at ICEPP:
 - \rightarrow Computing center for the ATLAS experiment
 - \rightarrow WLCG Tier2 site (only site in the ATLAS Japan)

The ATLAS Experiment

The Higgs Boson Discovery in 2012

The ATLAS Experiment

Raw data: ~1GB/s, ~10PB/year, Current total data size (including MC): >200PB

The Higgs Boson Discovery in 2012

Worldwide LHC Computing Grid (WLCG)

- A global computing collaboration for LHC \rightarrow Tier0 is CERN
- The Tokyo regional analysis center is one of Tier2 for ATLAS

The Tokyo regional analysis center

- The computing center at ICEPP, the University of Tokyo
- Supports ATLAS VO as one of the WLCG Tier2 sites
 →Provides local resources to the ATLAS Japan group, too
- All hardware devices are supplied by the three years rental
 - \rightarrow All hardware devices are renewed in three years
- Current system (Starting from Jan/2019):
 - →Worker node: 10,752cores (HS06: 18.97/core) (7,680 for WLCG, 145689.6 HS06*cores), 3.0GB/core
 - →File server: 15,840TB, (10,560TB for WLCG)

The Tokyo regional analysis center

- The computing center at ICEPP, the University of Tokyo
- Supports ATLAS VO as one of the WLCG Tier2 sites
 →Provides local resources to the ATLAS Japan group, too
- All hardware devices are supplied by the three years rental
 - \rightarrow All hardware devices are renewed in three years
- Current system (Starting from Jan/2019):
 - →Worker node: 10,752cores (HS06: 18.97/core) (7,680 for WLCG, 145689.6 HS06*cores), 3.0GB/core

Tier 2 Grid Accounting

• Devices are renewed in Dec/2018

During the migration

- Installation took 10 working days
 - \rightarrow The reduced system worked to minimize the downtime (only 16h) \rightarrow 768 CPU cores
- Data migration took 60 hours for 5.8PB data
 - \rightarrow Connected new-old storages by fiber channel cables
 - \rightarrow Copied data by using cp/rsync at each disk array
 - \rightarrow ~500MB/sec, 97 disk arrays

• Devices are renewed in Dec/2018

During the migration

After the migration

- Installation took 10 working days
 - \rightarrow The reduced system worked to minimize the downtime (only 16h)
 - \rightarrow 768 CPU cores
- Data migration took 60 hours for 5.8PB data
 - \rightarrow Connected new-old storages by fiber channel cables
 - \rightarrow Copied data by using cp/rsync at each disk array
 - \rightarrow ~500MB/sec, 97 disk arrays

(From SL6 to CentOS7)

https://www.sinet.ad.jp/en/news_en/2019-03-01news-2

https://testbed.nict.go.jp/jgn/english/networks/index.html

- SINET and JGN (NREN of Japan) made 100Gbps international network connections
- JGN has connection of Tokyo-Hong Kong
- SINET upgraded 100Gbps connections
 - \rightarrow Tokyo-Amsterdam-New York-Los Angeles global ring
 - \rightarrow Connection to Singapore
- Connection of our center to SINET is currently 20Gbps \rightarrow Will be 40Gbps in this weekend

IPv6/IPv4 Dual Stack

- WLCG requires IPv6
 - \rightarrow It becomes difficult to get new IPv4 addresses
- IPv6/IPv4 dual-stack was deployed for the storage element
- Connections to major sites of EU/US by LHCONE are also adapted to IPv6

Future Computing Resources

- WLCG have provided enormous computing resources and made it possible to give a lot of results by the LHC experiments
 → But we will need more resources for the future experiments
- CERN plans High-Luminosity LHC in 2026
 - \rightarrow The peak luminosity: x 5
 - →The current system cannot provide enough resources with expected budgets
 - →More improvements or new ideas are necessary
 - \rightarrow Software update
 - \rightarrow New devices: GPGPU, FPGA, (QC)
 - \rightarrow New grid structure: Data Cloud
 - \rightarrow External resources: HPC, Commercial cloud

Our Local System

- Panda: ATLAS job management system, using WLCG framework
- ARC-CE: Grid front-end
- HTCondor: Job scheduler

Hybrid System with Google Cloud Platform

- Cost of storage is high
 - \rightarrow Additional cost to extract data
- Only worker nodes (and some supporting servers) were deployed on cloud, and other services are in on-premises
 →Hybrid system

Google Cloud Platform Condor Pool Manager

- Google Cloud Platform Condor Pool Manager (GCPM)
 - \rightarrow <u>https://github.com/mickaneda/gcpm</u>
 - \rightarrow Can be installed by pip:
 - \rightarrow \$ pip install gcpm
- Manage GCP resources and HTCondor's worker node list
 - \rightarrow On-demand instance preparation
- Can be used for any of HTCondor systems
 - \rightarrow Useful for high-peak needs of CPUs, GPGPU instances, many cores instances, or high-memory instances which are needed once in a while

Cost Estimation

Full cloud system

Full on-premises system

On-premises Job Manager

On-premises O Google Cloud Platform Job Job \square 7 Manager Manager A Storage Worker node Storage Job output Data export to other sites 🔿 Google Cloud Platform Worker node

- Estimated with Dell machines
- 10k cores, 3GB/core memory, 35GB/core disk: \$5M
- 16PB storage: \$1M
- Power cost: \$20k/month
 - → For 3 years usage: ~\$200k/month (+Facility/Infrastructure cost, Hardware Maintenance cost, etc...)

Resource	Cost/month		
vCPU x20k	\$130k		
3GB x20k	\$52k		
Local Disk 35GBx20k	\$28k		
Storage 8PB	\$184k		
Network			
Storage to Outside 600 TB	\$86k		

Total cost: \$480k/month

Resource	Cost/month
vCPU x20k	\$130k
3GB x20k	\$52k
Local Disk 35GBx20k	\$28k
Network GCP WN to ICEPP Storage 300 TB	\$43k

Total cost: \$243k/month + on-premises costs (storage \$30k/month + others)

Hybrid System

Reedbush: HPC@The Univ. Tokyo

- Supercomputer system @Information Technology Center, The University of Tokyo
 →CPU:Intel Xeon (2CPUs/node (36cores/node))
 →GPU: NVIDIA Tesla P100
- CPU only nodes and GPU nodes
- OS: Read Hat Enterprise Linux 7

 PBS for the job management

- Lustre file system
- No external network access from each WN

- $\rightarrow\,$ Available only on the login node
- \rightarrow To manage jobs from CE, PBS wrapper commands are used
 - → qsub: ssh user@reedbush "cd \$work dir && qsub job.sh"

Collaboration in Asia

 Some European countries started to construct "data lake" structures

- Italy caching layer prototype for CMS
 → Using Xcache
 - \rightarrow Some storage-less Tier2s

- https://indico.cern.ch/event/769507/
- Data lake of Asia?
 - \rightarrow One of the collaboration ways of Asia
 - \rightarrow But each of us supports different VOs...
 - \rightarrow Network connection between Tokyo to Asia has been improved
 - \rightarrow SINTE will make more connections if we have valuable usage
 - \rightarrow Tokyo Korea, Tokyo Taiwan, etc...

<u>Summary</u>

- The Tokyo regional analysis center:
 - $\rightarrow \mbox{Tier2}$ of WLCG for ATLAS
 - \rightarrow Renewed to 5th system in Dec/2018
 - \rightarrow Successfully migrated
 - $\rightarrow \text{New}$ system has 10k CPU cores and 16PB disk
- SINET established global 100Gbps network
- Some R&D for the future extensions are on going →Cloud resources, HPCs
- How can we make a collaboration in Asia?
 →Data lake could be one of the way

Cost Estimation

Full on-premises system

Full cloud system

- Estimated with Dell machines
- 10k cores, 3GB/core memory, 35GB/core disk: \$5M
- 16PB storage: \$1M
- Power cost: \$20k/month
 - → For 3 years usage: ~\$200k/month (+Facility/Infrastructure cost, Hardware Maintenance cost, etc...)

- For GCP, use 20k to have comparable spec
 - \rightarrow Use Preemptible Instance (Hyperthreading On, half)
- 8PB storage which is used at ICEPP for now
- Cost to export data from GCP

https://cloud.google.com/compute/pricing https://cloud.google.com/storage/pricing

On-premises	O Google Cloud Platform
Job Manager	
	Worker node
Storage	

Hybrid system: 1k cores, 2.4GB/core memory

 \rightarrow Cost for month (x30), with 20k cores (x20): ~\$240k + on-premises costs

1	1 Duy 110ui 000t (10/1 00)			
	Usage	Cost/day	x30x20	
vCPU (vCPU*hours)	20046	\$177	\$106k	
Memory (GB*hours)	47581	\$56	\$34k	
Disk (GB*hours)	644898	\$50	\$30k	
Network (GB)	559	\$78	\$47k	
Other services		\$30	\$18k	
Total		\$391	\$236k	

1 Day Real Cost (13/Feb)

vCPU: 1vCPU instances max 200, 8 vCPUs instances max 100 Memory: 2.4 GB/vCPU

Disk: 50GB for 1vCPU instance, 150 GB for 8 vCPUs instance

Cost Estimation

Resource	Cost/month
vCPU x20k	\$130k
3GB x20k	\$42k
Local Disk 35GBx20k	\$28k
Network GCP WN to ICEPP Storage 300 TB	\$43k
Total	\$243k

ATLAS jobs on GCP and Reedbush

System	Hyper Threading	Core(vCPU)	Memory	CPU	HEPSPEC/ core	ATLAS simulation 1000events (hours)	Walltime*cores/Events
ICEPP local system	Off	32	96GiB	Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz	18.97	(8core job) 5.19	0.042
Google Cloud Platform	On	8	24GiB	Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz	12.62	(8core job) 9.27	0.074
Reedbush	Off	36	256GB	Intel(R) Xeon(R) CPU E5-2695 v4 @ 2.10GHz	16.78	(36 core job) 1.1	0.040

HEPSPEC (06): Benchmark for HEP

- The ATLAS production jobs can run with multi-processing mode
 - \rightarrow Normally 8 cores are used at WLCG sites
 - \rightarrow Will be multi-threading
- All GCP's instances are set as hyper-threading on
 - \rightarrow ~half performance of other systems
- Reedbush nodes have 36 cores
 - \rightarrow Each job occupies all cores in the node: Run 36 processes mode

System	Cost for 10k cores/Month
On-premises	\$200k
Reedbush	\$40k
Google Cloud	¢250k
Platform	φ230κ

- On-premises:
 - \rightarrow Total server cost of 10k CPU cores, 16PB storage (Dell)/3 years
 - \rightarrow Additional cost: infrastructure, maintenance
- Reedbush:
 - \rightarrow Non-university groups also can apply to use the system (price: x1.2)
 - \rightarrow Only limited number of resources
 - \rightarrow Currently max number of nodes is ~ 20 (~700cores)
 - \rightarrow Additional cost: on-premises storage and other service components
- GCP:
 - \rightarrow Hyper Threading On: Need double number of CPU cores (calculated by assuming 20k cores)
 - \rightarrow Reduced cost by using preemptible instances
 - \rightarrow Including network cost
 - \rightarrow Additional cost: on-premises storage and other service components