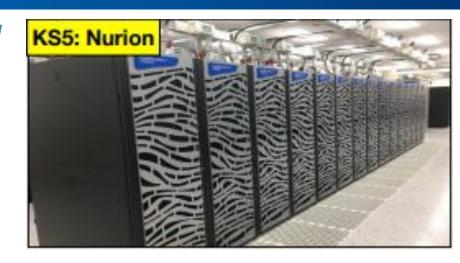
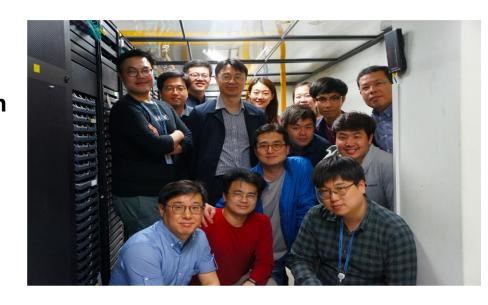


Site Report - KISTI, Korea -

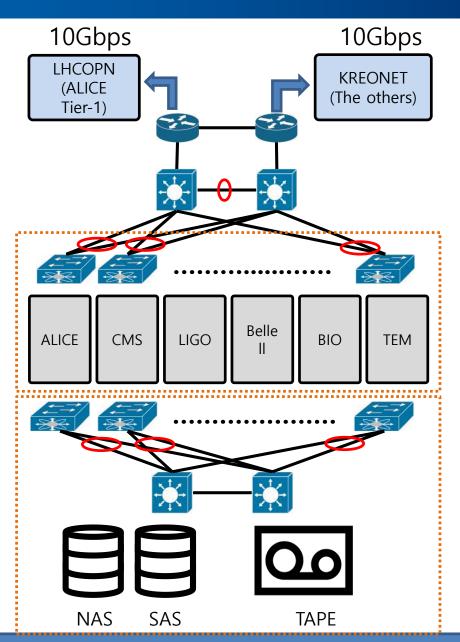
Geonmo Ryu KISTI GSDC




- Introduction of GSDC
- Network infrastructure of GSDC
- ALICE Tier-1
- CMS Tier-2
- ALICE & CMS Tier-3 Integration farm
- Recent News or issues at GSDC

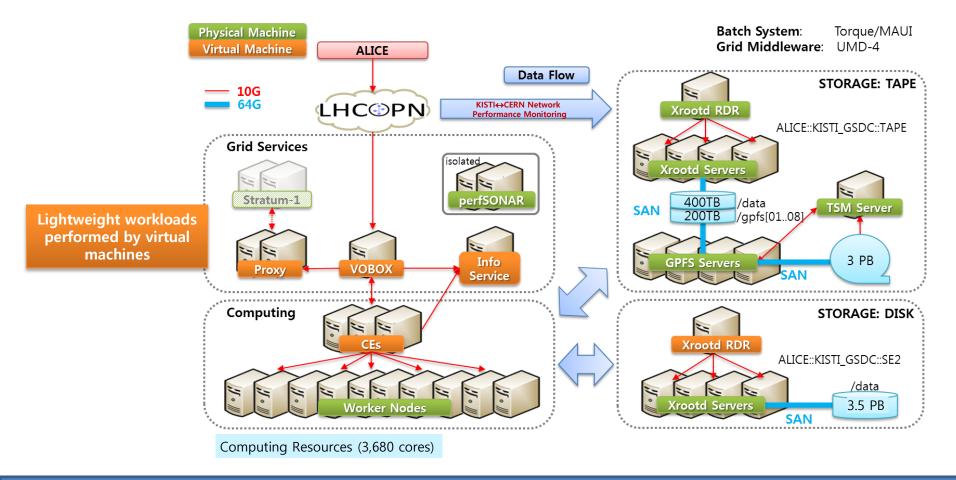
- Korea Institute of Science and Technology Information (KISTI)
- Government-funded research institute founded in 1962 for National Information Services and Supercomputing
- National Supercomputing Center
 Nurion
 (Top500's 15th supercomputer/2019 Jun)
- Global Science experimental Data hub Center (GSDC)
- Government-funded project, started in 2009 to promote Korean fundamental research through providing computing power and data storage
- Datacenter for data-intensive fundamental research

News: Movement of GSDC system



- O All GSDC's computing resources moved to the new building
- All data replicated in a backup safely, then move to the new space
- Advancement of facility infrastructure
 (Better environment for computing resources: electric power distribution, constant temperature & humidity equipment etc.)

Network

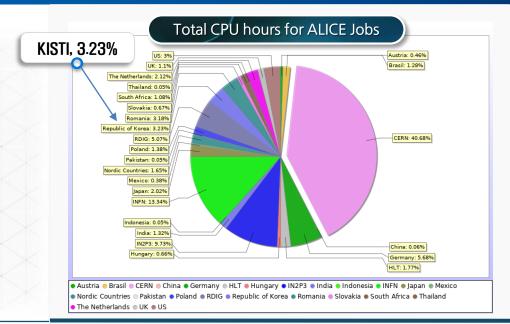

- External : 20Gbps
 - Dedicated Network for ALICE Tier-1
 - LHCOPN 10Gbps
 - KREONET for other experiments
 - 10Gbps
- Internal : 80Gbps
 - Network connectivity is redundant

3,680 Job slots, 7PB Storage, 10Gbps fully connected Services

WLCG Tier-1 Computing Jobs

KISTI Tier-1 has been providing reliable and stable service

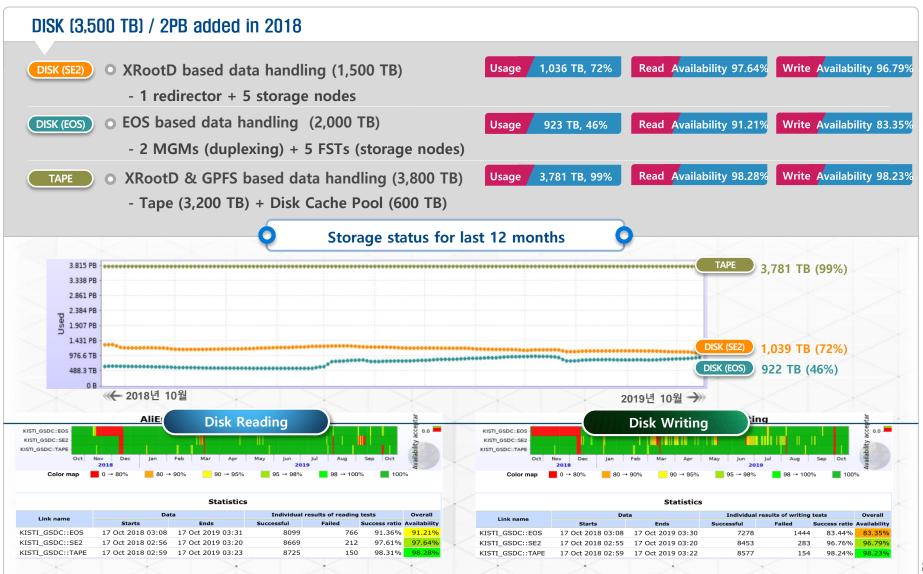
Meet the pledge of 2019 (41kHS06↑)

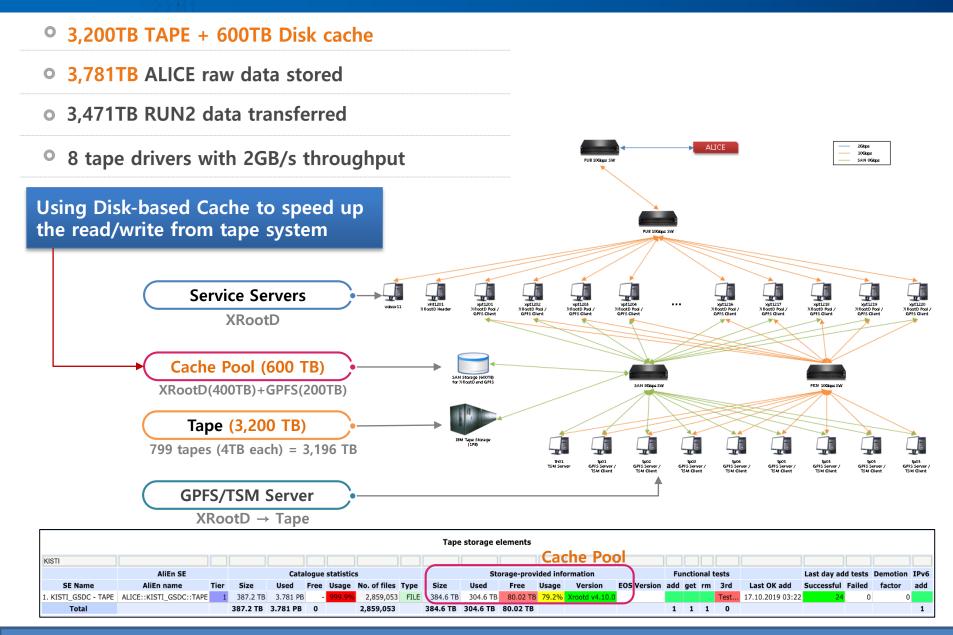

52 node X 32 core, 334 HS06/node

38 node X 32 core, 356 HS06/node

25 node X 40 core, 472 HS06/node

= 41 kHS06


Max 3,880 concurrent jobs



WLCG Tier-1 Storage (DISK/TAPE)

WLCG Tier-1 Tape archiving

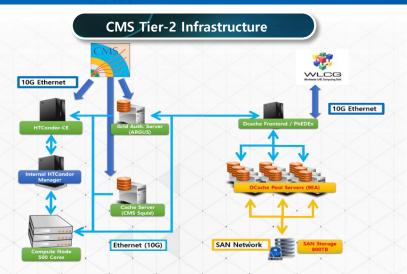
Keeping top most quality of services

	Relia	bility	Availability		
	Overall in 2018 L		Overall in 2018	Last 6 months	
ALICE	99.9%	99.5%	98%	99.5%	

Monthly target of WLCG: 97%

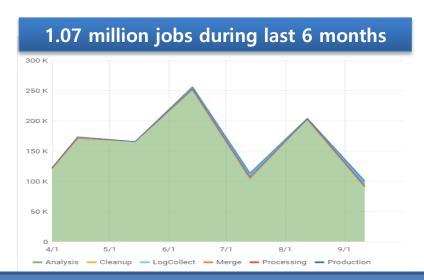
Participating in WLCG operation meeting every week, closely collaborating with WLCG members

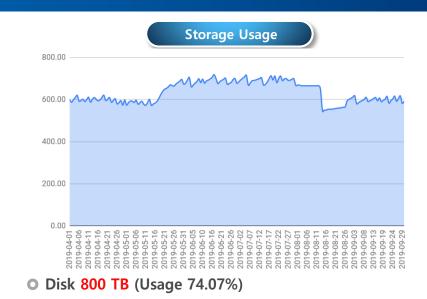
Monthly Availability/ Reliability (%)

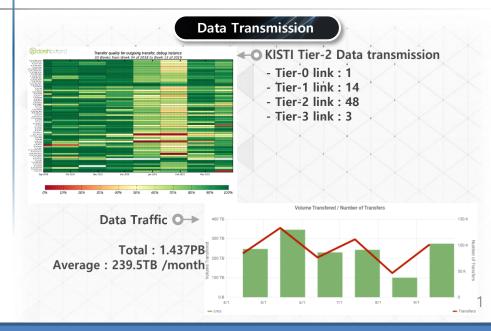

Service	Apr. 2019	May. 2019	Jun. 2019	July. 2019	Aug. 2019	Sep. 2019
Availability	100	100	100	99	98	100
Reliability	100	100	100	99	98	100

•
$$Reliability = \frac{T_{up}}{T_{up} + (T_{DOWN} - T_{SCHED_{DOWN}})}$$

• Availability = $\frac{T_{up}}{T_{up} + T_{DOWN}}$


 Movement of all GSDC's computing and storage resources to a new building (better environment)


WLCG Tier-2 Service Status (CMS Tier-2)



- Computing : Logical 1,000 Cores (10 kHS06)
- About 1% of Total CMS Tier-2 computing resource

Job Activities

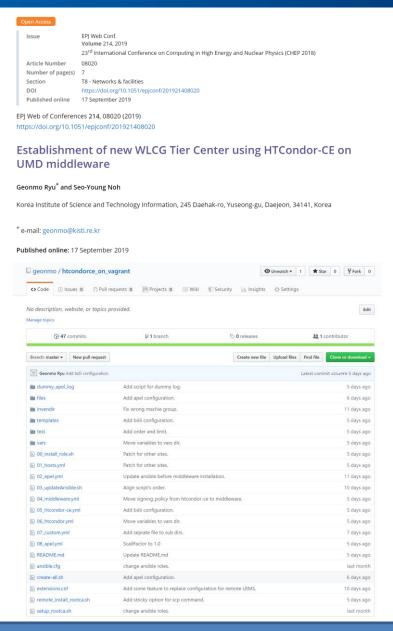
WLCG Tier-2 Service Availability / Reliability

	Relia	bility	Availability		
	Overall in 2018	Last 6 Months	Overall in 2018	Last 6 months	
CMS	98.27%	98.83%	95.59%	98.83%	

Monthly target of WLCG: 95%

Monthly Availability/ Reliability (%)

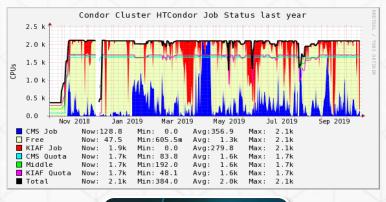
Service	Apr. 2019	May. 2019	Jun. 2019	July. 2019	Aug. 2019	Sep. 2019
Availability	100	99	99	99	98	98
Reliability	100	99	99	99	98	98


Federation	Availability	Reliability	
CERN-PROD	99%	99%	
HU-HGCC-T2	99%	99%	
T2_US_Florida	99%	99%	
T2_US_Nebraska	99%	99%	
T2_US_Purdue	99%	99%	
T2_US_Wisconsin	99%	99%	
BR-SP-SPRACE	98%	98%	
ES-CMS-T2	98%	98%	
FI-HIP-T2	98%	98%	
FR-GRIF	98%	99%	
FR-IN2P3-CC-T2	98%	99%	
FR-IN2P3-IPHC	98%	99%	
KR-KISTI-GSDC-02	98%	99%	
T2_US_Caltech	98%	98%	
UA-Tier2-Federation	98%	100%	
PK-CMS-T2	97%	97%	
T2_US_MIT	97%	97%	
TW-CMS-T2	97%	97%	

Federation	Availability	Reliability
DE-DESY-RWTH-CMS-T2	96%	96%
GR-loannina-HEP	96%	97%
UK-London-Tier2	96%	98%
T2_US_UCSD	95%	95%
UK-SouthGrid	95%	95%
AT-HEPHY-VIENNA-UIBK	94%	94%
IT-INFN-T2	94%	94%
IN-INDIACMS-TIFR	93%	94%
BE-TIER2	92%	95%
CH-CHIPP-CSCS	92%	93%
CN-IHEP	91%	97%
RU-RDIG	91%	93%
PT-LIP-LCG-Tier2	87%	87%
EE-NICPB	86%	88%
PL-TIER2-WLCG	82%	84%
TR-Tier2-federation	80%	80%
T2-LATINAMERICA	78%	78%

- Documentation about HTCondor-CE and APEL on UMD
 - CHEP poster
 - https://doi.org/10.105 1/epjconf/2019214080 20
 - "Ansible" tutorial code using vagrant
 - https://github.com/ge onmo/htcondorce_on_ vagrant

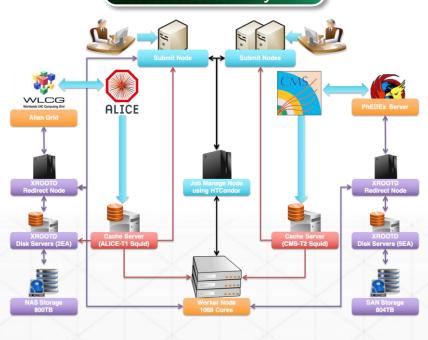
ALICE & CMS Integrated Tier-3


Dedicated to Koalice & KCMS community

- CPU 1,028 cores, Storage 1,604TB
- Integrated at Nov. 2018
- Bi-weekly user meeting (vidyo, each group)

Job Processed

	2017	2018(~Oct.)	2018(Nov.~)	2019(~Jun.)	2019.(Jul.~)
KoALICE	1,974,480*	336,922	113,915	432,974	256,402
KCMS	3,093,847	4,642,578	1,324,121	2,531,687	460,151


* Jobs has been more than usual due to the simulation

Storage Usage

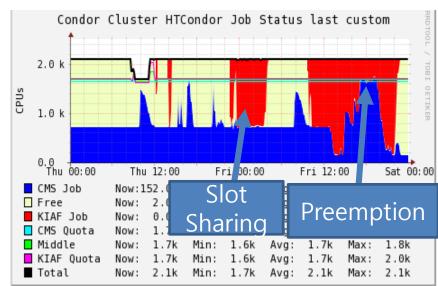
	Total	Used	Free	Usage
KoALICE	800 TB	467.0 TB	333.0 TB	58.37%
KCMS	804 TB	661.8 TB	142.2 TB	82.32%

ALICE&CMS Tier-3 system

User Accounts

Univ.	Inha	Pusan	Yonsei	Total
#	13	6	8	27

K	C	N	15	


KoALICE

Univ.	KNU	KU	SNU	SKKU	UOS	KHU	HYU	JNU	SJU	Total
#	19	13	19	11	19	2	8	7	4	102

- Group Quota
 - Slot sharing (400 vs 1656) and preemption
- Static and dynamic slots
 - Divided the resource into three slots 2:1:1
 - Hyper-threading enabled 2 CPU systems must have a multiple of four cores.
 - 3x the number of slot preemption when negotiator cycle time.
- Singularity Container
 - To solve OS difference
 - SL6 vs CentOS7


```
NUM_SLOTS = 3

NUM_SLOTS_TYPE_1 = 1

SLOT_TYPE_1 = 50%

SLOT_TYPE_1_PARTITIONABLE = TRUE

NUM_SLOTS_TYPE_2 = 1

SLOT_TYPE_2 = 25%

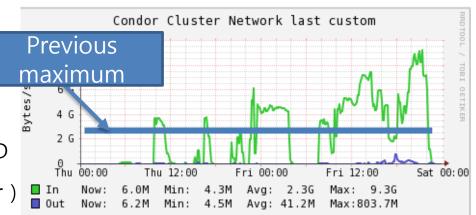
SLOT_TYPE_2_PARTITIONABLE = TRUE

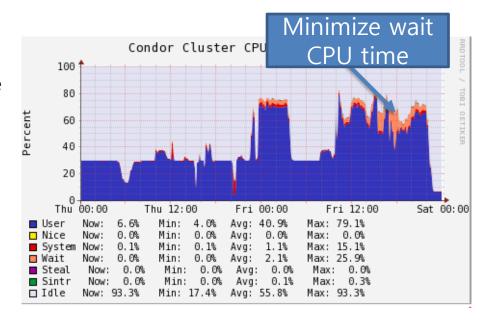
NUM_SLOTS_TYPE_3 = 1

SLOT_TYPE_3 = 25%

SLOT_TYPE_3_PARTITIONABLE = TRUE
```


Problem occurs


 Problem with data access speed through WN sharing


Solution

- Abandon access system using XRootD due to lack of machine (Only 2 machines available for XRootD Server)
- To acquire maximum performance of our NAS system, NFS directory is manually mounted for each WN machine
 - Data was migrated to a single volume but distributed across NAS devices

Current Status

 Peak read performance close to the speed limit 80Gbps (40 x 2 racks) of ToR switchs (9.3GB/s = 74.4Gbps)

Data Access issues of CMS Tier-3

- Issue 1. NAS + SAN storage for backend
 - Problem : Manage 604TB of SAN storage and 200TB of NAS storage as a single XRootD volume
 - Current : Can be integrated by configuration but disables xattr functionality
 - Trial #1: Used nfs_xattrs(FUSE for NFS with xattr) but it was too slow to operate
- Issue 2. User Access Control
 - Problem: Using "acc.authdb" feature solves problems with xrdfs or xrdcp. However, problems can arise with fuse mounts through xroodfs
 - Current: Created a directory for each user and automounted their storage repository directory under that directory. This allows users to access only their own directory, so there is no possibility of accidentally deleting or changing other users' data.
 - Limitation: However, difficulties exist in using public spaces.

- KISTI-GSDC operates WLCG ALICE Tier-1, CMS Tier-2 and ALICE & CMS Tier-3 centers.
- ALICE Tier-1 and CMS Tier-2 meet the service levels requested by the WLCG.
- Since CREAM CE is scheduled to be terminated, the introduction of HTCondor-CE is in progress or completed.
- A small achievement was achieved by integrating separate clusters using only HTCondor.
- There are still many problems to solve. We need the help and feedback of other Asian centers to solve our problems quickly.