HTCondor and Containers for Batch and Interactive use
(Mostly) a success story

Oliver Freyermuth, Peter Wienemann

University of Bonn
{freyermuth,wienemann}@physik.uni-bonn.de

24th September, 2019
Physics Institute at University of Bonn

- 240 members
- Biggest particle accelerator run by a German university (‘ELSA’, 164.4 m circumference) with two experiments (≈ 50 people)
- Groups from:
 - High Energy Physics (ATLAS, Belle II)
 - Hadron physics
 - detector development
 - photonics
 - theory groups

Extremely diverse requirements on software environments & job resources.

Old cluster used PBS / Maui, everything SL 6, mostly HEP usage. Chance to start over in 2017 ⇒ HTCondor!
Classical Cluster Setup

- PI Network (GPN)
 - Desktops: desktop001, desktop002, desktop003
 - cvmfs-stratum0, cvmfs-stratum1a, cvmfs-stratum1b, squid1, squid2

- BAF Network
 - Worker Nodes: condor-cm1, condor-cm2
 - WN001, WN002, WN003
 - CephFS: OSD001, OSD002, MDS001, MDS002, MDS003

- Desktop Nodes: submit001, submit002

- GW1, GW2

- BONNET (campus network / internet)
Our setup: ‘Submit Locally, Run Globally’
Key changes in our new setup

- All desktops, worker nodes, condor central managers fully puppetized, for HTCondor: HEP-Puppet/htcondor
 Module allows to set up queue super-users, block users from submission, set up HTCondor for Singularity,…
- **No login / submission nodes** (‘use your desktop’)
- Condor central managers in desktop network
- Desktops running Ubuntu 18.04 LTS
- Cluster nodes running CentOS 7.7
- Full containerization (all user jobs run in containers)
- Containerization decouples OS upgrades from user jobs
- Cluster file system (CephFS) directly accessible from Desktop machines via NFS.
- Cluster worker nodes interconnected with InfiniBand (56 Gbit/s) instead of Gigabit ethernet
HTCondor Configuration

- Authentication via Kerberos / LDAP
 - Issues with ticket lifetime don’t hit us heavily — yet
 (mostly short jobs, Kerberos only needed on submit machine)
 - Hit by some HTCondor bugs (no ticket caching on Collector
 overloading KDC servers, dagman authentication issue)

⇒ Looking forward to HTCondor prolonging tickets!

- Node health script:
 - run via STARTD_CRON
 - can pick up admin-enforced state via Puppet
 (e.g. for maintenance)
 - picks up state from ‘reboot-needed’ cronjob
 - Captures common node overload issues:
 - Heavy I/O on local disks (iowait)
 - Heavy swapping (HTCondor cannot limit swap usage!)
Node health checking

condor-cm1.physik.uni-bonn.de: HTCondor Machine unhealthy reasons (7d)

- hcondor.machines_REBOOT_NEEDED [avg] last: 0, min: 0, avg: 3.38, max: 5
- hcondor.machines_REBOOT_MARKER_INVALID [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_HEALTH_STATE_WRITING_FAILED [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_LAST_UNHEALTHY_TOO_RECENT [avg] last: 0, min: 0, avg: 1.35, max: 30
- hcondor.machines_UPTIME_TOO_SMALL [avg] last: 0, min: 0, avg: 0.0958, max: 41
- hcondor.machines_NETWORK_SLOW [avg] last: 0, min: 0, avg: 0.0719, max: 1
- hcondor.machines_KERNEL_CMDLINE [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_CVMFS_MOUNT_FAILED [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_TOO_MANY_D_STATE_PROCS [avg] last: 0, min: 0, avg: 0.2335, max: 13
- hcondor.machines_SWAP_USAGE_TOO_HIGH [avg] last: 1, min: 0, avg: 0.3832, max: 3
- hcondor.machines_POOL_DIR_TOO_FULL [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_JOWAIT_TOO_HIGH [avg] last: 0, min: 0, avg: 0.7665, max: 16
- hcondor.machines_POOL_DIR_TEST_FILE_DELETION [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_POOL_DIR_TEST_FILE_CREATION [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_POOL_DIR_MISSING [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_MARKED_UNHEALTHY_BY_PUPPET [avg] last: 1, min: 0, avg: 3.2, max: 41
- hcondor.machines_HEALTHCHECK_EXECTIME_TOO_LARGE [avg] last: 0, min: 0, avg: 0, max: 13
- hcondor.machines_HEALTHCHECK_EXECTIME_NEGATIVE [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_CEPHFS_DIR_TEST_FILE_DELETION [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_CEPHFS_DIR_TEST_FILE_CREATION [avg] last: 0, min: 0, avg: 0, max: 0
- hcondor.machines_CEPHFS_DIR_MISSING [avg] last: 0, min: 0, avg: 0, max: 0

Data from trends. Generated by: http://www.graphite.com

UNIVERSITÄT BONN
Node reboot handling

- Detection mainly via `needs-restarting -r`
- Start of drain smeared out over 10 days
- Marks nodes as ‘unhealthy’

This functionality is there (one way or another) in many clusters — but how do we survive without login / submit nodes?
Choice of Container Runtime

- Aiming for unprivileged lightweight runtime
- Needs working HTCondor support including interactive jobs
- Allow image distribution via CernVM FS

CernVM FS

- Read-only file system with aggressive caching and deduplication
- Ideal for many small files and high duplication factor
- Perfect match for unpacked containers
- ‘Unpacked’ is a requirement for rootless operation

⇒ Settled on Singularity for now, but wishing for support for off-the-shelf solutions such as Podman / runc.
Singularity

- Supports privileged and unprivileged operation
- Developed at LBNL, optimized for HPC applications: http://singularity.lbl.gov
- Process and file isolation, optional network isolation (no kernel isolation)
- Commonly used in HEP community
- Still works with old kernels (e.g. CentOS 6), *privileged only*

However...

- Young project with non-negligible rate of CVEs (version 3.0 was a full rewrite in Go)
- Focus on SIF™ (Singularity Image Format) requiring root
- Reproduces a lot of existing, standardized infrastructure in a non-standard way (cloud builders, container library etc.)

⇒ Use it, but avoid a lock-in as far as possible.
Container Build Workflow

- All containers based on official DockerHub base images
- Offering Ubuntu 18.04, CentOS 7 and SL 6 with site-specifics
- Rebuilt at least daily with Singularity recipe
- Deployed to our own CVMFS, kept there for at least 30 days
- Unpacked images also work with other runtimes (only site-specifics in Singularity recipes slightly builder-dependent)

CVMFS usage over a year, Containers (daily) & Software
Container Site-Specifics

- Compatibility with HEP experiments’ requirements (HEP_OSlibs, ALRB)
- User data directory in environment variable, quote check tool
- DBUS hacks for X11 applications in containers
- HTCondor resource requests (login message, environment)
- `lmod` environment modules integration:

  ```bash
  module load mathematica/12.0.0
  ```
- Source user-defined `.bashrc`, potentially OS-specific, from shared file system
- Allow users to relay mail
- Timezone setup
- Add packages requested by users
HTCondor Integration

- All jobs forced into Singularity

  ```
  SINGULARITY_JOB = true
  ```

- Users can select from pre-build containers (‘choose your OS’)

  ```
  CHOSEN_IMAGE = "$(SL6_DEFAULT_IMAGE)"
  CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is
    "CentOS7", "$(CENTOS7_DEFAULT_IMAGE)",
    $(CHOSEN_IMAGE))
  CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is
    "Ubuntu1804", "$(UBUNTU1804_DEFAULT_IMAGE)",
    $(CHOSEN_IMAGE))
  SINGULARITY_IMAGE_EXPR = $(CHOSEN_IMAGE)
  ```

- Paths to most recent image per OS and available OSes
 provided by include command : someScript.sh
‘Choose your OS’

- Users add to their Job ClassAd:

```
+ContainerOS = "CentOS7"
```

- Their jobs run in a container
- Same for interactive jobs (‘login-node experience’!)
- Small fractions of worker nodes exclusively for interactive jobs

But: Interactive jobs can go to any slot!

- Resource-request specific tuning via `/etc/profile` possible:

```
REQUEST_CPUS=$(awk '/^RequestCpus/ {print $3}' _CONDOR_JOB_AD)

export NUMEXPR_NUM_THREADS=${REQUEST_CPUS}
export MKL_NUM_THREADS=${REQUEST_CPUS}
export OMP_NUM_THREADS=${REQUEST_CPUS}
export CUBACORES=${REQUEST_CPUS}
export JULIA_NUM_THREADS=${REQUEST_CPUS}
```
Necessary hacks for interactive jobs

- As of HTCondor 8.6, interactive jobs use an sshd running inside the container (i.e. singularity is a ‘job-wrapper’ command)
- Need to have sshd installed inside the container
- We only got this to work privileged (potentially could tweak groups file to not contain tty group to go unprivileged)
- Need some obscure extra bind mounts:

  ```
  SINGULARITY_BIND_EXPR = 
  ↔  "'/pool, /usr/libexec/condor/, /cephfs, /cvmfs"
  ```

 ⇒ Need to include EXECUTE directory (/pool) and
 /usr/libexec/condor here!
Remaining issues in 8.6...

- singularity is only a ‘job-wrapper’ command
 - ⇒ sshd runs in a *new* container
 - ⇒ Interactive works ‘fine’ (two containers started...), but `condor_ssh_to_job` does not!
- Killing jobs takes long in some cases...
- Difference between batch and interactive
 (source `/etc/profile` needed in batch)

However...

- We have been running with this for two years now.
- Users are delighted by the new choices, and `ssh -X` works!
- There’s light on the horizon...!
The `nsenter` approach

- Enter the namespaces the container runtime has created
 ⇒ Essentially, ‘attach’ to the container!
- Compatible with *any* container runtime (with potential quirks)
- Other container runtimes one could think of:
 - Charliecloud (https://hpc.github.io/charliecloud/)
 - Even more lightweight (no PID / network namespaces)
 PID namespace could be handled by HTCondor
 - Code is short and easily auditable
 - Podman / runc (https://podman.io/)
 - Included in RHEL 7.6 and 8 with official support
 - Can be used with `alias docker=podman`
 - Can run rootless
 - CRIU integration (freeze, live-migrate)
 - Still requires bind-mount target directories to exist for rootless
 (GitHub issue 1671)

Here comes HTCondor 8.8!
HTCondor 8.8

- sshd now running outside of the container!
- However, lots of issues in 8.8.0:
 - Too modern `nsenter` required (not in any LTS distro)
 ⇒ fixed in 8.8.2
 - Support for rootless broken
 ⇒ fixed in 8.8.2
 - Interactive jobs closed after 3 minutes
 ⇒ partially fixed in 8.8.3
 - Environment in interactive jobs / `condor_ssh_to_job` unset
 ⇒ maybe fixed in 8.8.5 (and have workaround)
 - Interactive jobs / `condor_ssh_to_job` do not get a pty
 ⇒ not fixed yet
- Now running 8.8.5 everywhere but startd machines (8.6.13)
 ⇒ This requires some dirty hacks (interactive jobs never close).
 ⇒ This causes jobs to die on short network connection loss.

Looking forward to future fixes making 8.8 usable for us!
Container Usage

condor-cm1.physik.uni-bonn.de: HTCondor Jobs ContainerOS (14d)

condor-cm1.physik.uni-bonn.de: HTCondor Jobs ContainerOS (7d)

Data from trends.bonn.de
Container Usage: Well accepted!

Instead of `ssh` to a login node, users run:

```
freyermu@exp199:~$ condor_submit -interactive -append
  +ContainerOS="CentOS7"
Submitting job(s).
1 job(s) submitted to cluster 1008.
/usr/bin/xauth: file /jwd/.Xauthority does not exist
Welcome to sloti_2_2@wn004.baf.physik.uni-bonn.de!
You will be logged out after 7200 seconds of inactivity.
You requested 1 core(s), 512 MB RAM, 125 kB disk space.
freyermu@wn004(CentOS7) /pool/condor/dir_14973 $
```

- Well accepted by users.
- Rarely, new users still try to run SL 6 code on CentOS 7...
- No good way to run an IDE in the same environment (but this is also true for login nodes).
Conclusions

- New cluster setup works very well for us!
- Getting rid of login nodes solved a lot of issues and headaches
- HTCondor does a very good job and ClassAd system is extremely flexible both for administrators and users
- Containers with different software environments well-accepted and heavily used
- Still, we hit a list of bugs and hope for further improvement along the way...

Thank you!
Thank you for your attention!

☕️