
Introduction Configuration Containerization Conclusions

HTCondor and Containers for Batch and
Interactive use

(Mostly) a success story

Oliver Freyermuth, Peter Wienemann

University of Bonn
{freyermuth,wienemann}@physik.uni-bonn.de

24th September, 2019

1/ 21

mailto:freyermuth@physik.uni-bonn.de,wienemann@physik.uni-bonn.de

Introduction Configuration Containerization Conclusions Introduction Classical Setup Our setup

Physics Institute at University of Bonn
240 members
Biggest particle accelerator run by a German university (‘ELSA’,
164.4m circumference) with two experiments (� 50 people)
Groups from:

High Energy Physics (ATLAS, Belle II)
Hadron physics
detector development
photonics
theory groups

Extremely diverse requirements on software environments &
job resources.

Old cluster used PBS / Maui, everything SL 6, mostly HEP usage.
Chance to start over in 2017 => HTCondor!

2/ 21

Introduction Configuration Containerization Conclusions Introduction Classical Setup Our setup

Classical Cluster Setup
bafgw1
bafgw2

PI Network
(GPN)

BAF Network
(cluster)

...

NAT
DHCP fwd

MDS001

...

WN001

CephFS
Servers

condor-cm1
condor-cm2

desktop001
desktop002
desktop003

...

BONNET
(campus network / internet)

cvmfs-stratum0
cvmfs-stratum1a
cvmfs-stratum1b
squid1
squid2

De
sk

to
ps

W
orker Nodes

gw
1

gw
2

WN002

WN003

MDS002
MDS003

OSD002
OSD001login

job submit
test jobs

develop code

submit002
submit001

...

3/ 21

Introduction Configuration Containerization Conclusions Introduction Classical Setup Our setup

Our setup: ‘Submit Locally, Run Globally’
bafgw1
bafgw2

PI Network
(GPN)

BAF Network
(cluster)

...

xrootd
nfs

NAT
DHCP fwd

MDS001

...

WN001

CephFS
Servers

condor-cm1
condor-cm2

desktop001
desktop002
desktop003

...

BONNET
(campus network / internet)

cvmfs-stratum0
cvmfs-stratum1a
cvmfs-stratum1b
squid1
squid2

CCB

De
sk

to
ps

W
orker Nodes

gw
1

gw
2

WN002

WN003

MDS002
MDS003

OSD002
OSD001

4/ 21

Introduction Configuration Containerization Conclusions Key Changes Configuration Health Checking

Key changes in our new setup
All desktops, worker nodes, condor central managers fully
puppetized, for HTCondor: HEP-Puppet/htcondor
Module allows to set up queue super-users, block users from
submission, set up HTCondor for Singularity,. . .
No login / submission nodes (‘use your desktop’)
Condor central managers in desktop network
Desktops running Ubuntu 18.04 LTS
Cluster nodes running CentOS 7.7
Full containerization (all user jobs run in containers)
Containerization decouples OS upgrades from user jobs
Cluster file system (CephFS) directly accessible from Desktop
machines via NFS.
Cluster worker nodes interconnected with InfiniBand (56 Gbit=s)
instead of Gigabit ethernet

5/ 21

https://github.com/HEP-Puppet/htcondor

Introduction Configuration Containerization Conclusions Key Changes Configuration Health Checking

HTCondor Configuration

Authentication via Kerberos / LDAP
Issues with ticket lifetime don’t hit us heavily — yet
(mostly short jobs, Kerberos only needed on submit machine)
Hit by some HTCondor bugs (no ticket caching on Collector
overloading KDC servers, dagman authentication issue)

) Looking forward to HTCondor prolonging tickets!
Node health script:

run via STARTD_CRON
can pick up admin-enforced state via Puppet
(e.g. for maintenance)
picks up state from ‘reboot-needed’ cronjob
Captures common node overload issues:

Heavy I/O on local disks (iowait)
Heavy swapping (HTCondor cannot limit swap usage!)

6/ 21

Introduction Configuration Containerization Conclusions Key Changes Configuration Health Checking

Node health checking

7/ 21

Introduction Configuration Containerization Conclusions Key Changes Configuration Health Checking

Node reboot handling

Detection mainly via needs-restarting -r

Start of drain smeared out over 10 days
Marks nodes as ‘unhealthy’

This functionality is there (one way or another) in many clusters —
but how do we survive without login / submit nodes?

8/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Choice of Container Runtime

Aiming for unprivileged lightweight runtime
Needs working HTCondor support including interactive jobs
Allow image distribution via CernVM FS

CernVM FS
Read-only file system with aggressive caching and deduplication
Ideal for many small files and high duplication factor
Perfect match for unpacked containers
‘Unpacked’ is a requirement for rootless operation

) Settled on Singularity for now, but wishing for support for
off-the-shelf solutions such as Podman / runc.

9/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Singularity
Supports privileged and unprivileged operation
Developed at LBNL, optimized for HPC applications:
http://singularity.lbl.gov
Process and file isolation, optional network isolation (no kernel
isolation)
Commonly used in HEP community
Still works with old kernels (e.g. CentOS 6), privileged only

However. . .
Young project with non-negligible rate of CVEs (version 3.0
was a full rewrite in Go)
Focus on SIF™ (Singularity Image Format) requiring root
Reproduces a lot of existing, standardized infrastructure in a
non-standard way (cloud builders, container library etc.)

⇒ Use it, but avoid a lock-in as far as possible.
10/ 21

http://singularity.lbl.gov

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Container Build Workflow
All containers based on official DockerHub base images
Offering Ubuntu 18.04, CentOS 7 and SL 6 with site-specifics
Rebuilt at least daily with Singularity recipe
Deployed to our own CVMFS, kept there for at least 30 days
Unpacked images also work with other runtimes (only
site-specifics in Singularity recipes slightly builder-dependent)

CVMFS usage over a year, Containers (daily) & Software

11/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Container Site-Specifics
Compatibility with HEP experiments’ requirements
(HEP_OSlibs, ALRB)
User data directory in environment variable, quote check tool
DBUS hacks for X11 applications in containers
HTCondor resource requests (login message, environment)
lmod environment modules integration:

module load mathematica/12.0.0

Source user-defined .bashrc , potentially OS-specific, from
shared file system
Allow users to relay mail
Timezone setup
Add packages requested by users

12/ 21

https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs/tree/master
https://twiki.atlas-canada.ca/bin/view/AtlasCanada/ATLASLocalRootBase2
https://lmod.readthedocs.io

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

HTCondor Integration
All jobs forced into Singularity

SINGULARITY_JOB = true

Users can select from pre-build containers (‘choose your OS’)

CHOSEN_IMAGE = "$(SL6_DEFAULT_IMAGE)"
CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is

"CentOS7", "$(CENTOS7_DEFAULT_IMAGE)",
$(CHOSEN_IMAGE))

,!

,!

CHOSEN_IMAGE = ifThenElse(TARGET.ContainerOS is
"Ubuntu1804", "$(UBUNTU1804_DEFAULT_IMAGE)",
$(CHOSEN_IMAGE))

,!

,!

SINGULARITY_IMAGE_EXPR = $(CHOSEN_IMAGE)

Paths to most recent image per OS and available OSes
provided by include command : someScript.sh

13/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

‘Choose your OS’
Users add to their Job ClassAd:

+ContainerOS = "CentOS7"

Their jobs run in a container
Same for interactive jobs (‘login-node experience’!)
Small fractions of worker nodes exclusively for interactive jobs
But: Interactive jobs can go to any slot!
Resource-request specific tuning via /etc/profile possible:

REQUEST_CPUS=$(awk '/^RequestCpus/{print $3}'
${_CONDOR_JOB_AD}),!

export NUMEXPR_NUM_THREADS=${REQUEST_CPUS}
export MKL_NUM_THREADS=${REQUEST_CPUS}
export OMP_NUM_THREADS=${REQUEST_CPUS}
export CUBACORES=${REQUEST_CPUS}
export JULIA_NUM_THREADS=${REQUEST_CPUS}

14/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Necessary hacks for interactive jobs

As of HTCondor 8.6, interactive jobs use an sshd running
inside the container (i.e. singularity is a ‘job-wrapper’
command)
Need to have sshd installed inside the container
We only got this to work privileged (potentially could tweak
groups file to not contain tty group to go unprivileged)
Need some obscure extra bind mounts:

SINGULARITY_BIND_EXPR =
"/pool,/usr/libexec/condor/,/cephfs,/cvmfs",!

) Need to include EXECUTE directory (/pool) and
/usr/libexec/condor here!

15/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

Remaining issues in 8.6. . .

singularity is only a ‘job-wrapper’ command
) sshd runs in a new container
) Interactive works ‘fine’ (two containers started. . .),
but condor_ssh_to_job does not!

Killing jobs takes long in some cases. . .
Difference between batch and interactive
(source /etc/profile needed in batch)

However. . .
We have been running with this for two years now.
Users are delighted by the new choices, and ssh -X works!
There’s light on the horizon. . . !

16/ 21

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

The nsenter approach
Enter the namespaces the container runtime has created
) Essentially, ‘attach’ to the container!
Compatible with any container runtime (with potential quirks)
Other container runtimes one could think of:

Charliecloud (https://hpc.github.io/charliecloud/)
Even more lightweight (no PID / network namespaces)
PID namespace could be handled by HTCondor
Code is short and easily auditable

Podman / runc (https://podman.io/)
Included in RHEL 7.6 and 8 with official support
Can be used with alias docker=podman
Can run rootless
CRIU integration (freeze, live-migrate)
Still requires bind-mount target directories to exist for rootless
(GitHub issue 1671)

Here comes HTCondor 8.8!

17/ 21

https://hpc.github.io/charliecloud/
https://podman.io/
https://github.com/opencontainers/runc/issues/1671

Introduction Configuration Containerization Conclusions Runtime Building HTCondor Integration

HTCondor 8.8
sshd now running outside of the container!
However, lots of issues in 8.8.0:

Too modern nsenter required (not in any LTS distro)
) fixed in 8.8.2
Support for rootless broken
) fixed in 8.8.2
Interactive jobs closed after 3 minutes
) partially fixed in 8.8.3
Environment in interactive jobs / condor_ssh_to_job unset
) maybe fixed in 8.8.5 (and have workaround)
Interactive jobs / condor_ssh_to_job do not get a pty
) not fixed yet

Now running 8.8.5 everywhere but startd machines (8.6.13)
) This requires some dirty hacks (interactive jobs never close).
) This causes jobs to die on short network connection loss.

Looking forward to future fixes making 8.8 usable for us!

18/ 21

Introduction Configuration Containerization Conclusions Container Usage Conclusions

Container Usage

19/ 21

Introduction Configuration Containerization Conclusions Container Usage Conclusions

Container Usage: Well accepted!

Instead of ssh to a login node, users run:

freyermu@exp199:~$ condor_submit -interactive -append
'+ContainerOS="CentOS7"',!

Submitting job(s).
1 job(s) submitted to cluster 1008.
/usr/bin/xauth: file /jwd/.Xauthority does not exist
Welcome to sloti_2_2@wn004.baf.physik.uni-bonn.de!
You will be logged out after 7200 seconds of inactivity.
You requested 1 core(s), 512 MB RAM, 125 kB disk space.
freyermu@wn004(CentOS7) /pool/condor/dir_14973 $

Well accepted by users.
Rarely, new users still try to run SL 6 code on CentOS 7. . .
No good way to run an IDE in the same environment (but this
is also true for login nodes).

20/ 21

Introduction Configuration Containerization Conclusions Container Usage Conclusions

Conclusions

New cluster setup works very well for us!
Getting rid of login nodes solved a lot of issues and headaches
HTCondor does a very good job and ClassAd system is
extremely flexible both for administrators and users
Containers with different software environments well-accepted
and heavily used
Still, we hit a list of bugs and hope for further improvement
along the way. . .

Thank you!

21/ 21

Thank you

for your attention!

	Introduction
	Introduction
	Classical Setup
	Our setup

	Configuration
	Key Changes
	Configuration
	Health Checking

	Containerization
	Runtime
	Building
	HTCondor Integration

	Conclusions
	Container Usage
	Conclusions

	Appendix

