Condor Philosophy

Greg Thain

Agenda

The other talks are about the hows of HTCondor

This talk is about the why

First Principles: Who

> 1) Owner: 3 (€EE, £££ ?777)
» 2) Job Submitter

> 3) Administrator

The Philosophy on 1 slide

To reliably run as much work as possible

on as many machines as possible

(in order of precedence)

The other side — administrator’s

view
To maximize machine utilization
ABCs:
Always
Be
Computing

“No Cycle Left Behind”

The Unstated Assumption

“Work™ can be broken up into smaller jobs
Smaller the better (up to a point)
files as ipc HICodF
dependencies via dag gﬁ = 4
Optimize time-to-finish

not time-to-run

Overview of condor:
3 sides

JT > S
. ”' EXxecute
Submit \) /

Central
Manager

To reliably run...

> Reliablility 1t priority

> We can make HTCondor fast enough
w/o sacrificing any reliability — no screw polishing

To reliably run...

» Unix process per daemon
» Each has failure semantics
> Each cleans up on exit

» Each has responsibility
* Perhaps many per machine

THE

UNIX

PROGRAMMING
ENVIRONMENT

Brian W Kernighan
Rob Pike

To reliably run... requires parent

Small condor _master runs on all condor machines
Responsibilities:
° Like systemd Init, A G
« starts, restarts, kills children
° condor _on,

Fork/exec Fork/exec

* Detects hung kids and kills them(!)

° Exits If disk full
° Runs Linux kernel tuning script

master manages pProcess

Manage: MANAGEALINTHETE

> Remove what you create
* and what they created...

> Measure what you cre
* And report it

> Limit what you create

... as many jobs...

Requires a scheduler, the condor_schedd

Users submit jobs to schedd

Schedd is a database
reliable, slow

On crash, all restart

To support many jobs,

reliably means...

Scaling via many submit points

\.

=y

[
T
TS
[I
1D
| TS
i I
| 1D
i TS
M i r
{L 1D
i TS
| i T
i 1
i\ ™S
| i e
{L 1D]
i .
| i 1
i .
i "
i L .
i 1
.
|]
.
]

\.

-

EXxecute

| é

© '
*Q‘ Central

—>.

Submit‘ﬁachines

- Manager

Scaling via many submit points

C Adding submit points just helps scaling
Allows submit near the user

C “Submit locally, run globally”

L

But the schedd doesn’t schedule

» It does a little
> Schedd has jobs, can request machines
> But only uses the machines given to it

» Scheduling, not planning

The shadow manage running,
remote jobs

> One process per running job on submit

> Responsible for job’s policy remotely
° Tells the worker node what to do

> Expensive? Yes — worth it

..0N as many machines

Implies machines are heterogeneous

Could be foreign pools
Could be same pool with different config
Could be places without shared filesystem

900

Two-faced nature of HTCondor

Split responsibllity:
Worker side
Submit side s 2 srrven O

We encourage different co'nflg on both sides

Always focusing on responsibility of the side
Always consider where responsibility goes

The startd

» Startd represents the policy of the machine
> Creates “slots”, places for jobs to run

» Could conflict with job’s policy?
* Who wins?

> Always the machine — the job Is a guest

Startd Mission Statement

> Near sighted
» 3 Inputs only:
* Machine a

°* Running Jobs
* Candidate Running Job

> Knows nothing about the rest of the system!

Things the startd can do

> Only run some kinds of jobs
> Preempt one job for another
> Only run 1 job of some type
> EXpose and match custom resource

But the startd doesn’t run job

» Doesn’t run jobs directly,
» Creates (and manages!)
child process, the starter

The Starter

» Startd manages machine, starter job
> When job starts, startd spawns starter
> One starter per job, thus one per slot

)

Starter Responsibilities

Starter manages running job on machine:
Create environment for job

Monitor, report job resource usage home
Creates “Universe” metaphor

Clean up after job

* Condor Philosophy: renters clean up after use
« (Startd cleans up after starter...)

File Transfer

A few words on file transfer...

> We can use shared FS or File Transfer

> Prefer File Transfer:
* Managed
° Portable
* Declarative

Moving on to the middle si de...
Jj‘
Submit \ / Execute

Central
Manager

The Central Manager

> Part 1: The Collector
° The central database
* All In memory, lightweight

* Every thing reports to collector
« Everything is a classad

° condor_status gueries

The Collector

> Looses everything when it crashes
> Protocol is always be updating

> Not a central point of failure

» Garbage collects If no updates

The Negotiator

» Other "half” of scheduling

> Slow, allocates machines to user

* Two phase scheduling:
 Slow, negotiator rebalancing
 Fast, schedd scheduling and reusing of claims

> Not a single point of failure

Claiming Protocol

&%.v

5ubmi1=': '
ol s

L 4

L 4
<

J Submit

Claim Activation

Central Manaier

Submit Machine

Execute Machine

.
5% 3
5% 2
e®

Repeat until Claim released

Central Manaier

Submit Machine Execute Machine

.
5% 3
5% 2
e®

Repeat until Claim released

Central Manaier

Submit Machine Execute Machine

.
5% 3
5% 2
e®

When iIs claim released?

> When relinquished by one of the following

* lease on the claim is not renewed
« Why? Machine powered off, disappeared, etc

° schedd

« Why? Out of jobs, shutting down, schedd didn’t “like” the machine,
etc

° startd

« Why? Policy re CLAIM_WORKLIFE, prefers a different match (via
Rank), non-dedicated desktop, etc

° negotlator
« Why? User priority inversion policy
* explicitly via a command-line tool

« E.g. condor_vacate 5

Architecture items to note

Machines (startds) or submitters (schedds) can
dynamically appear and disappear

* Key for expanding a pool into clouds or grids

* Key for backfilling HPC resources
Scheduling policy can be flexible and very distributed
CM makes a match, then gets out of the way
Distributed policy enables federation across
administrative domains

* Lots of network arrows on previous slides
* Reflects the P2P nature of HTCondor

Quiz Time

> How to hold job that runs > 24 hours
° Or rather, where?

> On the submit machine?
> Or Execute Machine?

Discuss!

Quiz Answer

> It depends!

°* Property of job or property of machine?

Conclusion

> Thank you, and let's continue discussing...

