
Condor Philosophy

Greg Thain

Agenda

The other talks are about the hows of HTCondor

This talk is about the why

› 1) Owner: $$$ (€€€, £££ ???)

› 2) Job Submitter

› 3) Administrator

First Principles: Who

To reliably run as much work as possible

on as many machines as possible

(in order of precedence)

The Philosophy on 1 slide

To maximize machine utilization
ABCs:

Always

Be

Computing

“No Cycle Left Behind”

The other side – administrator’s

view

“Work” can be broken up into smaller jobs

Smaller the better (up to a point)

files as ipc

dependencies via dag

Optimize time-to-finish

not time-to-run

The Unstated Assumption

Overview of condor:

3 sides

Submit
Execute

Central

Manager

› Reliability 1st priority

› We can make HTCondor fast enough

w/o sacrificing any reliability – no screw polishing

To reliably run…

› Unix process per daemon

› Each has failure semantics

› Each cleans up on exit

› Each has responsibility

Perhaps many per machine

To reliably run…

Small condor_master runs on all condor machines

Responsibilities:

Like systemd init,

• starts, restarts, kills children

condor_on,

condor_off, condor_reconfig

Detects hung kids and kills them(!)

Exits if disk full

Runs Linux kernel tuning script

To reliably run… requires parent

master

child1 child2

Fork/exec
Fork/exec

TCPOn/off/restart

commands

Manage:

› Remove what you create

and what they created…

› Measure what you create

And report it

› Limit what you create

master manages process

Requires a scheduler, the condor_schedd

Users submit jobs to schedd

Schedd is a database

reliable, slow

On crash, all restart

To support many jobs,

reliably means…

… as many jobs…

Scaling via many submit points

Submit machines

Execute

Central

Manager

Scaling via many submit points

Adding submit points just helps scaling

Allows submit near the user

“Submit locally, run globally”

› It does a little

› Schedd has jobs, can request machines

› But only uses the machines given to it

› Scheduling, not planning

But the schedd doesn’t schedule

› One process per running job on submit

› Responsible for job’s policy remotely

Tells the worker node what to do

› Expensive? Yes – worth it

The shadow manage running,

remote jobs

Implies machines are heterogeneous

Could be foreign pools

Could be same pool with different config

Could be places without shared filesystem

…on as many machines

Split responsibility:

Worker side

Submit side

We encourage different config on both sides

Always focusing on responsibility of the side

Always consider where responsibility goes

Two-faced nature of HTCondor

› Startd represents the policy of the machine

› Creates “slots”, places for jobs to run

› Could conflict with job’s policy?

Who wins?

› Always the machine – the job is a guest

The startd

› Near sighted

› 3 inputs only:

Machine

Running Jobs

Candidate Running Job

› Knows nothing about the rest of the system!

Startd Mission Statement

› Only run some kinds of jobs

› Preempt one job for another

› Only run 1 job of some type

› Expose and match custom resource

Things the startd can do

› Doesn’t run jobs directly,

› Creates (and manages!)

child process, the starter

But the startd doesn’t run job

› Startd manages machine, starter job

› When job starts, startd spawns starter

› One starter per job, thus one per slot

The Starter

› Starter manages running job on machine:

› Create environment for job

› Monitor, report job resource usage home

› Creates “Universe” metaphor

› Clean up after job

Condor Philosophy: renters clean up after use

• (Startd cleans up after starter…)

› File Transfer

Starter Responsibilities

› We can use shared FS or File Transfer

› Prefer File Transfer:

Managed

Portable

Declarative

A few words on file transfer…

Moving on to the middle side…

Submit
Execute

Central

Manager

› Part 1: The Collector

The central database

All in memory, lightweight

Every thing reports to collector

• Everything is a classad

condor_status queries

The Central Manager

› Looses everything when it crashes

› Protocol is always be updating

› Not a central point of failure

› Garbage collects if no updates

The Collector

› Other “half” of scheduling

› Slow, allocates machines to user

Two phase scheduling:

• Slow, negotiator rebalancing

• Fast, schedd scheduling and reusing of claims

› Not a single point of failure

The Negotiator

30

Claiming Protocol

30

Execute MachineSubmit Machine

Submit

Schedd Startd

Central Manager
CollectorNegotiator

Q

J

S

Q

S

J

J S

J J SSCLAIM

31

Claim Activation

31

Execute MachineSubmit Machine
Schedd Startd

Central Manager
CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim Starter

32

Repeat until Claim released

32

Execute MachineSubmit Machine
Schedd Startd

Central Manager
CollectorNegotiator

CLAIMED

Job
Shadow

Activate

Claim Starter

33

Repeat until Claim released

33

Execute MachineSubmit Machine
Schedd Startd

Central Manager
CollectorNegotiator

CLAIMED

Job

Shadow

Activate

Claim Starter

› When relinquished by one of the following
lease on the claim is not renewed

• Why? Machine powered off, disappeared, etc

schedd
• Why? Out of jobs, shutting down, schedd didn’t “like” the machine,

etc

startd
• Why? Policy re CLAIM_WORKLIFE, prefers a different match (via

Rank), non-dedicated desktop, etc

negotiator
• Why? User priority inversion policy

explicitly via a command-line tool
• E.g. condor_vacate

When is claim released?

34

› Machines (startds) or submitters (schedds) can
dynamically appear and disappear
Key for expanding a pool into clouds or grids

Key for backfilling HPC resources

› Scheduling policy can be flexible and very distributed

› CM makes a match, then gets out of the way

› Distributed policy enables federation across
administrative domains
Lots of network arrows on previous slides

Reflects the P2P nature of HTCondor

Architecture items to note

35

› How to hold job that runs > 24 hours

Or rather, where?

› On the submit machine?

› Or Execute Machine?

Discuss!

Quiz Time

› It depends!

Property of job or property of machine?

Quiz Answer

› Thank you, and let’s continue discussing…

Conclusion

