
Federating HTCondor

pools

Greg Thain

Merging

Flocking

Startd flocking

Condor-C

Job Router

Glidein, in general

GlideinWMS

Condor CE

Agenda
Ways to send jobs from one pool to another

or… machines from one pool to another

Advantages and Disadvantages to every way

One HTCondor pool..

Submit

Machines

Execute

Central

Manager

Two pools

Many Policy Questions
From just one schedd?

For all jobs?

To all startds?

Who decides to send jobs?

When to decide?

What about firewalls?

Who is the Administrator?

Accounting and fair share

Merging: Just one 1 big pool

CONDOR_HOST = OTHER_CM_MACHINE

Change right hand condor pool’s config file

Merging: Pros

Easy to implement

All jobs go to all machines

Single fair share and accounting records

Merging: Cons

Requires one central manager – one accountant

May have firewall and networking problems

Can’t keep pools separate

Flocking
Flocking is a relationship from ONE SCHEDD to another CM

Flocking

FLOCK_TO = ip.addr.to.cm

From schedd config

FLOCK_FROM = \

ip.addr.from.sched

To cm config

From

schedd

To

cm

Flocking: Pros

From

schedd

To

cm

Easy to set up

Policy is fixed

Works for many uses

Flocking: Cons

From

schedd

To

cm

Difficult when many scheds

Or many cms

Policy is fixed

Requires trust between pools

Requires good networks

› By default, ALL jobs eligible to flock

› May want users to opt in via job submission

Selective Flocking

JOB_TRANSFORM_NAMES = REQUIREMENTS

JOB_TRANSFORM_REQUIREMENTS @= end

REQUIREMENTS JobUniverse == 5 && !(MY.WantGlidein?:0)

SET requirements (TARGET.PoolName == “MyHomePool") &&\

$(MY.requirements)

@end

New schedd config

Selective Flocking
STARTD_ATTRS = PoolName, $(STARTD_ATTRS)

PoolName = “MyHomePool”

New startd config

Executable = foo

Arguments = 1 2 3

Log = log

+WantGlidein = true

queue

New submit file

Startd (reverse) Flocking
Startd flocking allows one startd to appear in > 1 pool

Startd Flocking Config

COLLECTOR_HOST = \

my.cm, your.cm

From startd config

ALLOW_ADVERTISE_STARTD = \

from.startd.addr

To cm config

Startd Flocking: Pros
Per startd control

Easy to set up

Policy is fixed

Good for friendly pools

Startd Flocking: Cons
Difficult when many pools

Accounting may be tricky

Policy is mostly fixed

Requires trust between pools

Requires good networks

No user mapping

Condor-c is a job that runs on foreign schedd

Condor-C

grid_resource = condor joe@remotesched.example.com\

remotecm.example.com

+remote_jobuniverse = 5

+remote_requirements = True

+remote_ShouldTransferFiles = "YES"

+remote_WhenToTransferOutput = "ON_EXIT"

Executable = foo

Arguments = 1 2 3

Log = log

queue

mailto:joe@remotesched.example.com/

Condor-C: Pros
Per job forwarding

No policy

Useful as a base for other systems

After job sent, network can be broken

Good scalability

User is in charge

Good for submitting pilots

Condor-C: Cons
Requires GSI or SSL authentication – tough to set up

Job policy is fixed at submit time

JOB_ROUTER_DEFAULTS = \

[\

requirements = WantJobRouter;\

MaxJobs = 10;\

delete_requirements = true;\

]

JOB_ROUTER_ENTRIES = \

[GridResource = “condor”;\

name = “some”;\

…

]

Job Router: config

Job1

Job2

Job3

Job4

Job5

Job6

Job7

Schedd

with jobs Job router

Job5

Job5

’

Job5’

JobRouter is a condor daemon…

Job Router

Job1

Job2

Job3

Job4

Job5

Job6

Job7

Schedd

with jobs Job router

Grabs jobs from schedd, “I’ve got this one”

Uses rules to transform into new job

Submits new job to new schedd

Job5

Job5

’

Job5’

Mirrors job status to 1st sched

Job Router: pros

Job1

Job2

Job3

Job4

Job5

Job6

Job7

Schedd

with jobs Job router

Job5

Job5

’

Job5’

Works over slow WAN

Submitters don’t need to know their jobs are moved

Easy for admin to mutate previously submitted jobs

Job router supports > 1 route, can timeout and resubmit

Job Router: cons

Job1

Job2

Job3

Job4

Job5

Job6

Job7

Schedd

with jobs Job router

Job5

Job5

’

Job5’

Requires GSI, SSL, for remote auth

Early binding – Jobs can wait ‘in line’ when startds idle

Like merging, but dynamic

Create Overlay pool

Glidein, HobbleIn, the idea

Like merging, but dynamic

Submit jobs, startds reporting home

Glidein, HobbleIn, the idea

Executable = condor_master

Arguments = -f –t

Output = out

Queue 100

Glidein, HobbleIn

Glidein, HobbleIn

Startd running

as job

Late binding

Easy to merge lots of pools

Glidein, HobbleIn, pros:

Startd runs as non-root, some feature gone

Need good networking

Debugging can be tricky

Glidein, HobbleIn, cons:

› What if we could:

Pay for a new standalone pool in AWS

Flock to that pool

› condor_annex makes this easy

Annex

› Implementation of Glidein idea for OSG

› Very sophisticated

› Needs GSI security

› Requires lot of work to setup, run

GlideinWMS

› Combines condor-c, job router

› “Door” to non-condor remote pools

Condor-CE

Condor-ce

Conclusion

