
HTCondor Security Basics
European HTCondor Workshop Sept 2019

Todd Tannenbaum (tannenba@cs.wisc.edu)

Center for High Throughput Computing

Department of Computer Sciences

University of Wisconsin-Madison

› What are the threats?

› Who do you trust?

› What are the mechanisms?

› Other security concerns?

2

Overview

› The purpose of HTCondor is to accept

arbitrary code from users and run it on a

large number of machines

Threats

3

› The purpose of HTCondor is to accept

arbitrary code from users and run it on a

large number of machines

› The purpose of a botnet is to take arbitrary

code and run it on a large number of

machines

Threats

4

› So what’s the difference?

› You wish to prevent unauthorized access

› Ultimately, it just comes down to who can

use your pool, and how they can use it.

Threats

5

Basic Concepts

› “Who can use your pool” is really two

concepts:

› The “Who” is authentication

› The “can use” is authorization

Basic Concepts

› In the context of an HTCondor pool:

You want only hosts (machines) that you trust

to be in the pool

• ^^^ Is that enough?

You want only people you trust to submit jobs

Authentication

› For a secure pool, both users and

HTCondor daemons must authenticate

themselves

› HTCondor supports several mechanisms :

Host based (by just using source IP address)

File System (FS) – used by schedd by default

Pool Password (PASSWORD)

KERBEROS

SSL

GSI

› In addition to authenticating network

connections, you may also wish to use:

› Integrity Checks (MD5)

Allows HTCondor to know if traffic has been

tampered with

› Encryption (3DES, Blowfish)

Allows HTCondor to transmit encrypted data

so it cannot be spied on while in transit

Other Security Features

9

› READ

› WRITE

submit jobs, …

› DAEMON

Advertise ads into the collector, claim slots, …

› ADMINISTRATOR

Change user priorities, reconfig

› NEGOTIATOR

Can give matches (slots) to schedds

Authorization Levels

10

› When first contacting each other,

HTCondor daemons have a short

negotiation to find out which mechanisms

are support and what features are required

for the connection

Security Negotiation

11

client
server

I want to submit a job

WRITE operation: Kerberos required

KERBEROS

normal submit protocol

Security Negotiation

› Policy Reconciliation Example:

CLIENT POLICY
SEC_DEFAULT_ENCRYPTION = OPTIONAL

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

SERVER POLICY
SEC_DEFAULT_ENCRYPTION = REQUIRED

SEC_DEFAULT_INTEGRITY = REQUIRED

SEC_DEFAULT_AUTHENTICATION = REQUIRED

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

RECONCILED POLICY
ENCRYPTION = YES

INTEGRITY = YES

AUTHENTICATION = YES

METHODS = SSL

13

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST = my-central-manager.wisc.edu

ALLOW_READ = *

14

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

15

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)

16

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

Thoughts?

17

CONDOR_HOST = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)

ALLOW_ADMINISTRATOR = $(CONDOR_HOST)

Create a pool password file and copy to

all machines in the pool

18

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

19

require authentication and integrity for everything...

SEC_DEFAULT_AUTHENTICATION=REQUIRED

SEC_DEFAULT_INTEGRITY=REQUIRED

...except read access...

SEC_READ_AUTHENTICATION=OPTIONAL

SEC_READ_INTEGRITY=OPTIONAL

this will require PASSWORD authentications for daemon-to-daemon, and

allow FS authentication for submitting jobs and administrator commands

SEC_PASSWORD_FILE = /etc/condor/passwords.d/POOL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, PASSWORD

SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD

SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD

AUTHORIZATION SECTION (eg ALLOW_*, DENY_*)

allow any process that can read the pool password to act as a daemon

ALLOW_DAEMON = condor_pool@*

allow admin commands from root or tannenba on the central manager

ALLOW_ADMINISTRATOR = root@*/$(CONDOR_HOST), \

tannenba@*/$(CONDOR_HOST)

only the condor daemons on the central manager should be negotiating

ALLOW_NEGOTIATOR = condor_pool@*/$(CONDOR_HOST)

See security

HOWTO

Recipes at

htcondor.org

Pretty good… any "bad news"?

20

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

Could use Puppet SSL certs…

21

Require SSL for daemon-to-daemon communications

SEC_DAEMON_INTEGRITY = REQUIRED

SEC_DAEMON_AUTHENTICATION = REQUIRED

SEC_DAEMON_AUTHENTICATION_METHODS = SSL

SEC_NEGOTIATOR_INTEGRITY = REQUIRED

SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED

SEC_NEGOTIATOR_AUTHENTICATION_METHODS = SSL

If you have a mapfile, set this to the HTCondor canonical name instead

ALLOW_DAEMON = ssl@unmapped

SSL cert and key locations

SSL_DIR = /var/lib/puppet/ssl

AUTH_SSL_CLIENT_CAFILE = $(SSL_DIR)/certs/ca.pem

AUTH_SSL_CLIENT_CERTFILE = $(SSL_DIR)/certs/$(FULL_HOSTNAME).pem

AUTH_SSL_CLIENT_KEYFILE = $(SSL_DIR)/private_keys/$(FULL_HOSTNAME).pem

AUTH_SSL_SERVER_CAFILE = $(SSL_DIR)/certs/ca.pem

AUTH_SSL_SERVER_CERTFILE = $(SSL_DIR)/certs/$(FULL_HOSTNAME).pem

AUTH_SSL_SERVER_KEYFILE = $(SSL_DIR)/private_keys/$(FULL_HOSTNAME).pem

See security

HOWTO

Recipes at

htcondor.org

› New in HTCondor v8.9

› A token is signed by a symmetric private

key (e.g. the pool password!) and contains

An identity

• For use in ALLOW_XXX and DENY_XXX

authorization lists

An expiration time

A bounding set of permitted actions

Or could use new TOKEN

authentication method

22

Keep pool password on CM…

23

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

Create some tokens…

24

condor_token_create -identity node1@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_STARTD

condor_token_create -identity node2@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_STARTD

condor_token_create -identity submit1@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_SCHEDD

….

And distribute tokens….

25

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

Or just use v8.9 security

"Quick Configuration" for a new pool!

26

What about user submit from a different

node? Or Jupyter NB?

27

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job
condor_token_fetch –lifetime XXX

› Are your condor_config files secured?

› They should be owned and only modifiable

by root.

› If you use a config directory, make sure

only root can create files in it

Configuration Security

28

› HTCondor can allow configuration changes

using a command-line tool:

condor_config_val –set Name Value

› However, this behavior is off by default and

needs to be enabled on a case-by-case

basis for each config parameter… use

carefully only if you really need it

Configuration Security

29

› HTCondor typically runs “as root”

› Why?

Impersonating users

Process isolation

Reading secure credentials

› When it isn’t actively using root, it switches

effective UID to another user (“condor”)

HTCondor Privilege

30

› HTCondor will never launch a user job as

root. There is a “circuit breaker” at the

lowest level to prevent it.

› If not using system credentials, the Central

Manager can run without root priv

› Let’s examine some different Startd

configurations

HTCondor Privilege

31

Startds have a few different options for

running jobs by comparing UID_DOMAIN:

› Run jobs as the submitting user

› Run jobs as a dedicated user per slot

Keeps jobs running as a low-privilege user

Isolates jobs from one another

Makes it easy to clean up after a job

› Run jobs as the user “nobody”

May allow jobs to interfere with one another

This helps: USE_PID_NAMESPACES = True

StartD Configurations

32

› Even if that admin has not required

encryption for all network connections, user

jobs can specify per-file for both input and

output if the files should be encrypted:

Encrypt_Input_Files = file1, *.dat

Encrypt_Output_Files = data.private

Encrypted File Transfer

33

› If you are using Linux with ecryptfs

installed, you can have HTCondor encrypt

the execute directory on disk, offering extra

protection of sensitive data.

› Can be enabled pool-wide by the admin:

ENCRYPT_EXECUTE_DIRECTORY = True

› Per-job in the submit file:

Encrypt_Execute_Directory = True

Encrypt Execute Directory

34

› SUBMIT_REQUIREMENT allows the

administrator to restrict what jobs are able

to enter the queue

› Can be used to prevent users from lying

about what groups they belong to:

SUBMIT_REQUIREMENT_NAMES = GROUP1

SUBMIT_REQUIREMENT_GROUP1= (AcctGroup =!= “group1”) ||

(AcctGroup =?= “group1” && (Owner==“zmiller” || Owner==“tannenba”))

SUBMIT_REQUIREMENT_GROUP1_REASON=“User not in group1”

Restricting Users

35

› SUBMIT_REQUIREMENT allows the

administrator to restrict what jobs are able

to enter the queue

› Can be used to allow only certain

executable files, number of CPUs

requested for a job, anything else that is

part of the Job ClassAd

Restricting Users

36

› HTCondor is periodically assessed by an

independent research group.

› Our vulnerability reporting process is

documented and vulnerability reports

publicly available:

http://research.cs.wisc.edu/htcondor/security/

Vulnerabilities

37

http://research.cs.wisc.edu/htcondor/security/

› Tip: Try emailing the htcondor-users

mailing list:

https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

Thank you

and

Questions?

38

https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

