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› What are the threats?

› Who do you trust?

› What are the mechanisms?

› Other security concerns?
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Overview



› The purpose of HTCondor is to accept 

arbitrary code from users and run it on a 

large number of machines

Threats
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› The purpose of HTCondor is to accept 

arbitrary code from users and run it on a 

large number of machines

› The purpose of a botnet is to take arbitrary 

code and run it on a large number of 

machines

Threats
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› So what’s the difference?

› You wish to prevent unauthorized access

› Ultimately, it just comes down to who can 

use your pool, and how they can use it.

Threats
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Basic Concepts

› “Who can use your pool” is really two 

concepts:

› The “Who” is authentication

› The “can use” is authorization



Basic Concepts

› In the context of an HTCondor pool:

You want only hosts (machines) that you trust 

to be in the pool

• ^^^ Is that enough?

You want only people you trust to submit jobs



Authentication

› For a secure pool, both users and 

HTCondor daemons must authenticate 

themselves

› HTCondor supports several mechanisms :

Host based (by just using source IP address)

File System (FS) – used by schedd by default

Pool Password (PASSWORD)

KERBEROS

SSL

GSI



› In addition to authenticating network 

connections, you may also wish to use:

› Integrity Checks (MD5)

Allows HTCondor to know if traffic has been 

tampered with

› Encryption (3DES, Blowfish)

Allows HTCondor to transmit encrypted data 

so it cannot be spied on while in transit

Other Security Features
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› READ

› WRITE 

submit jobs, …

› DAEMON

Advertise ads into the collector, claim slots, …

› ADMINISTRATOR

Change user priorities, reconfig

› NEGOTIATOR

Can give matches (slots) to schedds

Authorization Levels
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› When first contacting each other, 

HTCondor daemons have a short 

negotiation to find out which mechanisms 

are support and what features are required 

for the connection

Security Negotiation

11

client
server

I want to submit a job

WRITE operation: Kerberos required

KERBEROS

normal submit protocol



Security Negotiation

› Policy Reconciliation Example:

CLIENT POLICY
SEC_DEFAULT_ENCRYPTION = OPTIONAL 

SEC_DEFAULT_INTEGRITY = OPTIONAL

SEC_DEFAULT_AUTHENTICATION = OPTIONAL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, GSI, KERBEROS, SSL, PASSWORD

SERVER POLICY
SEC_DEFAULT_ENCRYPTION = REQUIRED

SEC_DEFAULT_INTEGRITY = REQUIRED

SEC_DEFAULT_AUTHENTICATION = REQUIRED

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

RECONCILED POLICY
ENCRYPTION = YES

INTEGRITY = YES

AUTHENTICATION = YES

METHODS = SSL
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST  = my-central-manager.wisc.edu

ALLOW_READ = *
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST  = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST  = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)



16

Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job

CONDOR_HOST  = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)

ALLOW_ADMINISTRATOR = $(CONDOR_HOST) 



Thoughts?
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CONDOR_HOST  = my-central-manager.wisc.edu

ALLOW_READ = *

ALLOW_DAEMON = $(CONDOR_HOST), submit*.wisc.edu, worker*.wisc.edu

ALLOW_NEGOTIATOR = $(CONDOR_HOST)

ALLOW_ADMINISTRATOR = $(CONDOR_HOST) 



Create a pool password file and copy to 

all machines in the pool
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job
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# require authentication and integrity for everything...

SEC_DEFAULT_AUTHENTICATION=REQUIRED

SEC_DEFAULT_INTEGRITY=REQUIRED

# ...except read access...

SEC_READ_AUTHENTICATION=OPTIONAL

SEC_READ_INTEGRITY=OPTIONAL

# this will require PASSWORD authentications for daemon-to-daemon, and

# allow FS authentication for submitting jobs and administrator commands

SEC_PASSWORD_FILE = /etc/condor/passwords.d/POOL

SEC_DEFAULT_AUTHENTICATION_METHODS = FS, PASSWORD

SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD

SEC_NEGOTIATOR_AUTHENTICATION_METHODS = PASSWORD

#### AUTHORIZATION SECTION  (eg ALLOW_*, DENY_*)

# allow any process that can read the pool password to act as a daemon

ALLOW_DAEMON = condor_pool@*

# allow admin commands from root or tannenba on the central manager

ALLOW_ADMINISTRATOR = root@*/$(CONDOR_HOST),  \

tannenba@*/$(CONDOR_HOST) 

# only the condor daemons on the central manager should be negotiating

ALLOW_NEGOTIATOR = condor_pool@*/$(CONDOR_HOST)

See security

HOWTO

Recipes at

htcondor.org



Pretty good… any "bad news"?
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job



Could use Puppet SSL certs…
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# Require SSL for daemon-to-daemon communications

SEC_DAEMON_INTEGRITY = REQUIRED

SEC_DAEMON_AUTHENTICATION = REQUIRED

SEC_DAEMON_AUTHENTICATION_METHODS = SSL

SEC_NEGOTIATOR_INTEGRITY = REQUIRED

SEC_NEGOTIATOR_AUTHENTICATION = REQUIRED

SEC_NEGOTIATOR_AUTHENTICATION_METHODS = SSL

# If you have a mapfile, set this to the HTCondor canonical name instead

ALLOW_DAEMON = ssl@unmapped

# SSL cert and key locations

SSL_DIR = /var/lib/puppet/ssl

AUTH_SSL_CLIENT_CAFILE = $(SSL_DIR)/certs/ca.pem

AUTH_SSL_CLIENT_CERTFILE = $(SSL_DIR)/certs/$(FULL_HOSTNAME).pem

AUTH_SSL_CLIENT_KEYFILE = $(SSL_DIR)/private_keys/$(FULL_HOSTNAME).pem

AUTH_SSL_SERVER_CAFILE = $(SSL_DIR)/certs/ca.pem

AUTH_SSL_SERVER_CERTFILE = $(SSL_DIR)/certs/$(FULL_HOSTNAME).pem

AUTH_SSL_SERVER_KEYFILE = $(SSL_DIR)/private_keys/$(FULL_HOSTNAME).pem

See security

HOWTO

Recipes at

htcondor.org



› New in HTCondor v8.9

› A token is signed by a symmetric private 

key (e.g. the pool password!) and contains

An identity 

• For use in ALLOW_XXX and DENY_XXX 

authorization lists

An expiration time

A bounding set of permitted actions

Or could use new TOKEN 

authentication method
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Keep pool password on CM…
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job



Create some tokens…
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condor_token_create -identity node1@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_STARTD

condor_token_create -identity node2@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_STARTD

condor_token_create -identity submit1@pool.example.com \

-lifetime 160000000 \

-authz ADVERTISE_SCHEDD

….



And distribute tokens….
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job



Or just use v8.9 security

"Quick Configuration" for a new pool!
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What about user submit from a different 

node? Or Jupyter NB?
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Central Manager

negotiator collector

Submit Node

schedd

Worker Node

startd

job
condor_token_fetch –lifetime XXX



› Are your condor_config files secured?

› They should be owned and only modifiable 

by root.

› If you use a config directory, make sure 

only root can create files in it

Configuration Security
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› HTCondor can allow configuration changes 

using a command-line tool:

condor_config_val –set Name Value

› However, this behavior is off by default and 

needs to be enabled on a case-by-case 

basis for each config parameter… use 

carefully only if you really need it

Configuration Security
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› HTCondor typically runs “as root”

› Why?

Impersonating users

Process isolation

Reading secure credentials

› When it isn’t actively using root, it switches 

effective UID to another user (“condor”)

HTCondor Privilege
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› HTCondor will never launch a user job as 

root.  There is a “circuit breaker” at the 

lowest level to prevent it.

› If not using system credentials, the Central 

Manager can run without root priv

› Let’s examine some different Startd

configurations

HTCondor Privilege
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Startds have a few different options for 

running jobs by comparing UID_DOMAIN:

› Run jobs as the submitting user

› Run jobs as a dedicated user per slot

Keeps jobs running as a low-privilege user

Isolates jobs from one another

Makes it easy to clean up after a job

› Run jobs as the user “nobody”

May allow jobs to interfere with one another

This helps: USE_PID_NAMESPACES = True

StartD Configurations
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› Even if that admin has not required 

encryption for all network connections, user 

jobs can specify per-file for both input and 

output if the files should be encrypted:

Encrypt_Input_Files = file1, *.dat

Encrypt_Output_Files = data.private

Encrypted File Transfer

33



› If you are using Linux with ecryptfs

installed, you can have HTCondor encrypt 

the execute directory on disk, offering extra 

protection of sensitive data.

› Can be enabled pool-wide by the admin:

ENCRYPT_EXECUTE_DIRECTORY = True

› Per-job in the submit file:

Encrypt_Execute_Directory = True

Encrypt Execute Directory
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› SUBMIT_REQUIREMENT allows the 

administrator to restrict what jobs are able 

to enter the queue

› Can be used to prevent users from lying 

about what groups they belong to:

SUBMIT_REQUIREMENT_NAMES = GROUP1

SUBMIT_REQUIREMENT_GROUP1= (AcctGroup =!= “group1”) ||

(AcctGroup =?= “group1” && (Owner==“zmiller” || Owner==“tannenba”))

SUBMIT_REQUIREMENT_GROUP1_REASON=“User not in group1”

Restricting Users
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› SUBMIT_REQUIREMENT allows the 

administrator to restrict what jobs are able 

to enter the queue

› Can be used to allow only certain 

executable files, number of CPUs 

requested for a job, anything else that is 

part of the Job ClassAd

Restricting Users
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› HTCondor is periodically assessed by an 

independent research group.

› Our vulnerability reporting process is 

documented and vulnerability reports 

publicly available:

http://research.cs.wisc.edu/htcondor/security/

Vulnerabilities
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http://research.cs.wisc.edu/htcondor/security/


› Tip: Try emailing the htcondor-users 

mailing list:

https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

Thank you 

and

Questions?
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https://lists.cs.wisc.edu/mailman/listinfo/htcondor-users

