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Using the LHC beams in the �xed-target mode
Contributions to the ESPP update and other scienti�c sources

3 Contributions to submitted in December [overall signed by 200+ physicists]
Physics opportunities for a �xed-target programme in the ALICE experiment by F. Galluccio
et al.: ID 47

Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
�e LHCSpin Project by C. Aidala et al.: ID 111

Physics Beyond Colliders documents
Physics Beyond Colliders: QCDWorking Group Report

by the PBC QCDWorking Group (A. Dainese et al.) : arXiv:1901.04482
Summary Report of Physics Beyond Colliders at CERN

by R. Alemany et al.: arXiv:1902.00260
CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
Summary by the PBC LHC FTWorking Group: yet to appear

Reviews
Phys. Rept 2012
AFTER@LHC Review 2019
Special issueJ.P. Lansberg (IPNO) FT@(HL)LHC May 7, 2019 2 / 21

http://arxiv.org/abs/arXiv:1901.04482
http://arxiv.org/abs/arXiv:1902.00260


3 main research axes:

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
� Very large gluon PDF uncertainties for x à 0.5.
� Gluon EMC e�ect to understand the quark EMC e�ect
� Proton charm content � high-energy neutrino & cosmic-ray physics

Dynamics and spin of gluons and quarks inside (un)polarised nucleons
� Possible missing contribution to the proton spin: Orbital Angular Momentum Lg ;q :

1
2 �

1
2∆Σ � ∆G �Lg �Lq

� Test of the QCD factorisation framework
� Determination of the linearly polarised gluons in unpolarised protons

Heavy-ion collisions towards large rapidities
� A complete set of heavy-avour studies between SPS and RHIC energies
� Test the formation of azimuthal asymmetries thanks to a broad rapidity reach
� Test the factorisation of cold nuclear e�ects from p � A to A � B collisions with Drell-Yan
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Part I

Possible Implementations and Luminosities
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Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s. energy: Rapidity shift:
Boost:

7 TeV proton beam on a fixed target

GeV 1152  pN Ems
8.40  l byy60)2/(  msBoost:

c.m.s. energy: Rapidity shift:

2.76 TeV Pb beam on a fixed target
GeV 722 Pb  Ems NNN

8.40...  labsmc yy60)2/(  Nms

gy p y
Boost:

PbNNN

3.40...  labsmc yy40

E�ect of boost : [particularly relevant for high energy beams]

LHCb and the ALICE muon arm become backward detectors [yc.m.s. @ 0]
�e ALICE central barrel becomes an extreme backward detector
With the reduced

º
s, their acceptance for physics grows and nearly covers

half of the backward region for most probes [�1 @ xF @ 0]
Allows for backward physics up to high x2

[uncharted for proton-nucleus coll.; most relevant for pp� with large x� ]
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Possible implementations
Internal gas target (with or without storage cell)

� can be installed in one of the existing LHC caverns, and coupled to existing experiments
� validated by LHCb with SMOG [their luminosity monitor used as a gas target]
� uses the high LHC particle current: p ux: 3.4 � 1018 s�1 & Pb ux: 3.6 � 1014 s�1
� SMOG 2
� Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
� A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

� crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]

� the LHC beam halo is recycled on dense target: proton ux: 5 � 108 s�1 & lead ux: 2 � 105 s�1

� Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
� Beam split : similar uxes; less/no civil engineering; could be coupled to an existing experiment

� Luminosities with internal gas target or crystal-based solutions are not very di�erent
� �e beam line option is currently a little too ambitious (this could change with FCC)
� �e gas targets are the best polarised targets and satisfactory for heavy-ion studies
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Solutions within ALICE & reviewed by the PBC working group

Material mainly from Physics opportunities for a �xed-target programme in the
ALICE experiment by F. Galluccio et al.: ID 47
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Solutions within LHCb & reviewed by the PBC working group

Material on SMOG2 and LHCSpin from�e SMOG2 Project
CERN-PBC-Notes-2018-007 and�e LHCSpin Project by C. Aidala et al.: ID
111
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SMOG: more than a demonstrator ?

� Physics results now owing in
� Limited statistical samples (400 J~ψ) and no pH baseline yet; LpHe � 7 nb�1

� Plan to install a storage cell [SMOG2] to increase the target local density
� Di�erent options discussed for future LHCb upgrades: No decision taken yet
� However decision for the installation of a vacuum valve during LS2.
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Luminosity comparison [w detector constraints]

LHCb ‘possible’

Assumption: Rates only constrained by the DAQ (40 MHz for pp coll.)
LpH2~H� : 10  �1 yr�1 ; LpXe : 300 pb�1 yr�1 ; LPbXe : 30 nb�1 yr�1

LHCb ‘SMOG2’ baseline for Run3
Assumption: Storage cell installed, very parasitic mode
Lp beam : 30 pb�1 (on H,D or Ar); L Pb beam : 5 nb�1 (on Ar)

ALICE ‘possible’ from Run4�

Assumption: Readout rate: 50 kHz in PbPb coll. and possibly up to 1 MHz in pp and pA coll.
With internal gas target: LpH2~H� : 250 pb�1 ; LPbXe : 8 nb�1

With beam splitting and solid target: LpW : 6 pb�1 ; LPbW : 3 nb�1
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Part II

Examples of Physics Studies
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Drell-Yan
C. Hadjidakis et al., 1807.00603

� Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF �t (E866 & E772 @ Fermilab).

� Extremely large yields up to x2 � 1 [plot made for pXe with a Hermes like target]
� Same acceptance for pp collisions
� A single measurement (in pp coll.) at RHIC, just released
� Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting
� as well as the nuclear PDF uncertainties
� On-going theory study forW� production accounting for threshold resummation
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Drell-Yan performances for spin analyses [LHCb-like detector]

D. Kikola et al. Few Body Syst. 58 (2017) 139

� DY pair production on a transversely
polarised target is the aim of several
experiment (COMPASS, E1039, STAR, E1039)

� Check the sign change in AN DY vs
SIDIS: hot topic in spin physics !

� From an exploration phase to a
consolidation phase

�
3He� target� quark Sivers e�ect in the
neutron via DY: unique !
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Kinematical coverage for heavy avours
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� ALICE could also cover ηLab � 1 � 2 for quarkonia into dileptons with one muon in the muon
arm and another in the central barrel

� Both for LHCb and ALICE, the coverage depends on the target position
� Access towards large x crucial : EMC e�ect, spin and UHE neutrinos
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Quarkonium Projections
D. Kikola et al. Few Body Syst. 58 (2017) 139

� AN for all quarkonia (J~ψ, ψ�, χc , Υ�nS�, χb & ηc) can be measured
[So far, only J~ψ by PHENIX with large uncertainties]

[FoM not degraded with a H-jet like solution]
� Also access on polarised neutron (3He�) at the per cent level for J~ψ!
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� Completely new perspectives to study the gluon Sivers e�ect [and beyond� Lg]
� Di-J~ψ allow one to study the kT dependence of the gluon Sivers function for the very �rst time !
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Heavy ions: rapidity scan & quarkonium precision studies

Energy domain: between SPS and
RHIC
Rapidity scan to scan through µB & T
with a good PID (LHCb and ALICE)
At backward rapidities, lower
backgrounds
Handle on more quarkonium states
(e.g. χc,b , ηc) and on open charm and
beauty
FoMs for χc,b and ηc to be done in
cooperation with the LHCb and
ALICE collaborations with advanced
simulations
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Rapidity scan
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Quarkonium Projections: heavy-ion collisions

B.Trzeciak et al.Few-Body Syst (2017) 58:148

Like for nPDF studies (see later), multiple quarkonium studies are needed

Clear need for a reliable pA baseline

Statistical-uncertainty projections (accounting for background subtraction)
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[No nuclear modi�cations assumed, LPbXe = 30 nb�1]
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Gluons at the high-x frontier

Extremely promising �rst
projections
[NB: initial nPDF uncertainties for x A 0.1 (red
band) are underestimated; simply no data exist
there. Projection done assuming that other nuclear
effect are under control.]

Proton PDFs studies : yet to be
done along the lines of the
studies carried out for low-x
gluon at the LHC
PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

ö Contrary to nPDF studies
bearing on nuclear modi�cation
factors, one needs ways to reduce
the systematical theory
uncertainties
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Reward: unique constraints on gluon PDFs at high x and low scales
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Three main themes push for a fixed-target program at the LHC

�e high x frontier: new probes of the con�nement
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�e nucleon spin and the transverse dynamics of the partons
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new energy, new rapidity domain and new probes
Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
2 ways towards fixed-target collisions with the LHC beams
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Heavy-Ion Physics
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Spin physics
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Hadron structure
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