

Fixed Target opportunities at the (HL-)LHC (v0.2)

J.P. Lansberg

IPN Orsay - Paris-Sud U./Paris Saclay U. - CNRS/IN2P3

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 1 / 21

Using the LHC beams in the fixed-target mode

Contributions to the ESPP update and other scientific sources

3 Contributions to submitted in December

- *Physics opportunities for a fixed-target programme in the ALICE experiment* by F. Galluccio *et al.*: ID 47
- Community Support for A Fixed-Target Programme for the LHC by J.D. Bjorken et al.: ID 67
- The LHCSpin Project by C. Aidala et al.: ID 111

Physics Beyond Colliders documents

- Physics Beyond Colliders: QCD Working Group Report by the PBC QCD Working Group (A. Dainese et al.) : arXiv:1901.04482
- Summary Report of Physics Beyond Colliders at CERN

by R. Alemany et al.: arXiv:1902.00260

イロト イヨト イヨト イヨト

[overall signed by 200+ physicists]

- CERN-PBC-Notes: e.g. 2019-003,2019-002,2019-001,2018-008,2018-007,2018-003,2018-001
- Summary by the PBC LHC FT Working Group: yet to appear

Reviews

- Phys. Rept 2012
- AFTER@LHC Review 2019

J.P. Lansberg (IPNO)

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 3 / 21

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

↔ high-energy neutrino & cosmic-ray physics

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- · Gluon EMC effect to understand the quark EMC effect
- Proton charm content \leftrightarrow high-energy neutrino & cosmic-ray physics

Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

· Determination of the linearly polarised gluons in unpolarised protons

High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for $x \gtrsim 0.5$.
- Gluon EMC effect to understand the quark EMC effect
- Proton charm content \leftrightarrow high-energy neutrino & cosmic-ray physics

Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Test of the QCD factorisation framework

· Determination of the linearly polarised gluons in unpolarised protons

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
- Test the formation of azimuthal asymmetries thanks to a broad rapidity reach
- Test the factorisation of cold nuclear effects from p + A to A + B collisions with Drell-Yan

イロト イヨト イヨト イヨト

Part I

Possible Implementations and Luminosities

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 4 / 21

A 3 N

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 5 / 21

(日)

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:	115 GeV
Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$	@
2.76 TeV Pb beam on a fixed target		322
c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$	Rapidity shift:	🎪 72 GeV 🐣
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$	* 🎪

J.P.	Lans	berg 🛛	(IPNO)	
------	------	--------	--------	--

• • • • • • • • • • • •

Energy range

7 TeV proton beam on a fixed target

Effect of boost :

[particularly relevant for high energy beams]

J.P. Lansberg (IPNC	J.P.	.P	! I	.aı	ns	b	er	g	(1	P	N	0)
---------------------	------	----	-----	-----	----	---	----	---	----	---	---	---	---

FT@(HL)LHC

May 7, 2019 5 / 21

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{tab} = 4.8$ 2.76 TeV Pb beam on a fixed targetc.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{tab} = 4.3$ Boost: $\gamma \approx 40$ $\gamma \approx 0 \rightarrow y_{tab} = 4.3$

Effect of boost :

[particularly relevant for high energy beams]

- LHCb and the ALICE muon arm become backward detectors
- The ALICE central barrel becomes an extreme backward detector

 $[v_{cms} < 0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$ $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ 2.76 TeV Pb beam on a fixed target $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ Boost: $\gamma \approx 40$ $\gamma \simeq 40$

Effect of boost :

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[v_{cms} < 0]$
- The ALICE central barrel becomes an extreme backward detector
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers

half of the backward region for most probes $[-1 < x_F < 0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \, \text{GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$ $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ 2.76 TeV Pb beam on a fixed targetc.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \, \text{GeV}$ Rapidity shift:
 $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ Boost: $\gamma \approx 40$ $\gamma \approx 40$

Effect of boost :

[particularly relevant for high energy beams]

イロト イポト イヨト イヨト

• LHCb and the ALICE muon arm become backward detectors

 $[y_{cms} < 0]$

- The ALICE central barrel becomes an extreme backward detector
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers

half of the backward region for most probes $[-1 < x_F < 0]$

• Allows for backward physics up to high *x*₂

[uncharted for proton-nucleus coll.; most relevant for pp^{\uparrow} with large x^{\uparrow}]

Internal gas target (with or without storage cell)

イロト イポト イヨト イヨト

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation
- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$

イロト イポト イヨト イヨト

[UA9 collaboration]

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

イロト イポト イヨト イヨト

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

→ Luminosities with internal gas target or crystal-based solutions are not very different

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation
 - the LHC beam halo is recycled on dense target: proton flux: 5×10^8 s⁻¹ & lead flux: 2×10^5 s⁻¹
 - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)

[UA9 collaboration]

Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
- · SMOG 2
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

Bent crystal option: beam line vs split

· crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- $\rightarrow~$ Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$ The beam line option is currently a little too ambitious (this could change with FCC)
- → The gas targets are the best polarised targets and satisfactory for heavy-ion studies

Solutions within ALICE & reviewed by the PBC working group

Material mainly from *Physics opportunities for a fixed-target programme in the ALICE experiment* by F. Galluccio *et al.*: ID 47

Solutions within LHCb & reviewed by the PBC working group

Material on SMOG2 and LHCSpin from *The SMOG2 Project* CERN-PBC-Notes-2018-007 and *The LHCSpin Project* by C. Aidala *et al.*: ID 111

SMOG: more than a demonstrator ?

J.P. Lansberg	(IPNO)
---------------	--------

FT@(HL)LHC

 Image: Non-state
 Image: Non-state

イロト イヨト イヨト イヨト

SMOG: more than a demonstrator ?

- Physics results now flowing in
- Limited statistical samples (400 J/ψ) and no *pH* baseline yet; $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$

J.P. Lansberg (IPNO	berg (IPN)	O)
---------------------	------------	----

→ Ξ →

SMOG: more than a demonstrator ?

- Physics results now flowing in
- Limited statistical samples (400 J/ψ) and no *pH* baseline yet; $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$
- Plan to install a storage cell [SMOG2] to increase the target local density
- Different options discussed for future LHCb upgrades: No decision taken yet
- However decision for the installation of a vacuum valve during LS2.

J.P.	Lans	berg ((IPNO)
------	------	--------	--------

[w detector constraints]

J.P. Lansberg (IPNO)

FT@(HL)LHC

▲ ■ ▶ ■ ∽ Q May 7, 2019 10 / 21

イロト イヨト イヨト イヨト

[w detector constraints]

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.) $\mathcal{L}_{pH_2/H^{\dagger}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.) $\mathcal{L}_{pH_2/H^{\dagger}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

LHCb 'SMOG2' baseline for Run3

Assumption: Storage cell installed, very parasitic mode $\mathcal{L}_{p \text{ beam}}$: 30 pb⁻¹ (on H,D or Ar); $\mathcal{L}_{Pb \text{ beam}}$: 5 nb⁻¹ (on Ar)

< ロ > < 同 > < 回 > < 回 > < 回 >

LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.) $\mathcal{L}_{pH_2/H^{\uparrow}}$: 10 fb⁻¹ yr⁻¹; \mathcal{L}_{pXe} : 300 pb⁻¹ yr⁻¹; \mathcal{L}_{PbXe} : 30 nb⁻¹ yr⁻¹

LHCb 'SMOG2' baseline for Run3

Assumption: Storage cell installed, very parasitic mode $\mathcal{L}_{p \text{ beam}}$: 30 pb⁻¹ (on H,D or Ar); $\mathcal{L}_{Pb \text{ beam}}$: 5 nb⁻¹ (on Ar)

ALICE 'possible' from Run4*

Assumption: Readout rate: 50 kHz in PbPb coll. and possibly up to 1 MHz in *pp* and *p*A coll. With internal gas target: $\mathcal{L}_{pH_2/H^{\dagger}}$: 250 pb⁻¹; \mathcal{L}_{PbXe} : 8 nb⁻¹ With beam splitting and solid target: \mathcal{L}_{pW} : 6 pb⁻¹; \mathcal{L}_{PbW} : 3 nb⁻¹

Part II

Examples of Physics Studies

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 11 / 21

イロト イヨト イヨト イヨト

C. Hadjidakis et al., 1807.00603

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 12 / 21

 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

FT@(HL)LHC

May 7, 2019 12 / 21

イロト イポト イモト イモト

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]

 C. Hadjidakis et al., 1807.00603
 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for pp collisions

 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).

- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released

• □ ▶ • • □ ▶ • □ ▶ • □ ▶
- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting

• □ ▶ • □ ▶ • □ ▶ • •

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- · Same acceptance for *pp* collisions
- · A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties

pW case

- C. Hadjidakis et al., 1807.00603 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for *p*Xe with a Hermes like target]
- Same acceptance for *pp* collisions
- A single measurement (in pp coll.) at RHIC, just released
- · Decrease of the proton PDF uncertainties : FoM using Bayesian reweighting
- as well as the nuclear PDF uncertainties
- On-going theory study for W^{\pm} production accounting for threshold resummation

イロト イポト イヨト イヨト

D. Kikola et al. Few Body Syst. 58 (2017) 139

FT@(HL)LHC

→ ▲ ≣ → ≣ → Q (~ May 7, 2019 13 / 21

イロト イヨト イヨト イヨト

D. Kikola et al. Few Body Syst. 58 (2017) 139

DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !

Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	x [↑]	£ [cm ⁻² s ⁻¹]	$\mathcal{P}_{\rm eff}$	$\mathcal{F} / \sum_i A_i$ [cm ⁻² s ⁻¹]
AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	6.4×10^{32}
AFTER@LHCb	$p^{3}\text{He}^{\uparrow}$	7000	115	0.05÷0.95	2.5×10^{32}	23%	$1.4 imes 10^{31}$
$\operatorname{AFTER}@\operatorname{ALICE}_{\mu}$	$p H^{\uparrow}$	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	$1.6 imes 10^{31}$
COMPASS	$\pi^- NH_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
(CERN)	-						
PHENIX/STAR	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.1$	2×10^{32}	50%	5.0×10^{31}
(RHIC)							
E1039 (FNAL)	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	$9.0 imes 10^{33}$
E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	$7.2 imes 10^{34}$
NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	4.9×10^{31}
fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	200	$0.1 \div 0.5$	8×10^{31}	60%	2.9×10^{31}
(RHIC)							
fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.6$	6×10^{32}	50%	1.5×10^{32}
(RHIC)							
PANDA (GSI)	$\bar{p}H^{\uparrow}$	15	5.5	$0.2 \div 0.4$	2×10^{32}	20%	8.0×10^{30}

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase

Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	x↑	£ [cm ⁻² s ⁻¹]	$\mathcal{P}_{\rm eff}$	$\mathcal{F} / \sum_i A_i$ [cm ⁻² s ⁻¹]
AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	$6.4 imes 10^{32}$
AFTER@LHCb	$p^{3}\text{He}^{\uparrow}$	7000	115	0.05÷0.95	$2.5 imes 10^{32}$	23%	$1.4 imes 10^{31}$
$\operatorname{AFTER}@\operatorname{ALICE}_{\mu}$	$p H^{\uparrow}$	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	1.6×10^{31}
COMPASS	$\pi^- NH_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
(CERN)	-						
PHENIX/STAR	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.1$	2×10^{32}	50%	5.0×10^{31}
(RHIC)							
E1039 (FNAL)	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	$9.0 imes 10^{33}$
E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	$7.2 imes 10^{34}$
NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	$4.9 imes 10^{31}$
fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	200	$0.1 \div 0.5$	8×10^{31}	60%	2.9×10^{31}
(RHIC)							
fsPHENIX	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.6$	6×10^{32}	50%	1.5×10^{32}
(RHIC)							
PANDA (GSI)	$\bar{p}H^{\uparrow}$	15	5.5	$0.2 \div 0.4$	2×10^{32}	20%	8.0×10^{30}

- DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics !
- From an exploration phase to a consolidation phase
- ³He[†] target → quark Sivers effect in the neutron via DY: unique !

Experiment	colliding systems	beam energy [GeV]	\sqrt{s} [GeV]	x [↑]	£ [cm ⁻² s ⁻¹]	$\mathcal{P}_{\rm eff}$	$\mathcal{F} / \sum_i A_i$ [cm ⁻² s ⁻¹]
AFTER@LHCb	pH^{\uparrow}	7000	115	0.05÷0.95	1×10^{33}	80%	$6.4 imes 10^{32}$
AFTER@LHCb	$p^{3}\text{He}^{\uparrow}$	7000	115	0.05÷0.95	$2.5 imes 10^{32}$	23%	$1.4 imes 10^{31}$
AFTER@ALICE $_{\mu}$	$p H^{\uparrow}$	7000	115	$0.1 \div 0.3$	2.5×10^{31}	80%	1.6×10^{31}
COMPASS (CERN)	$\pi^- \mathrm{NH}_3^{\uparrow}$	190	19	0.05÷0.55	2×10^{33}	14%	4.0×10^{31}
PHENIX/STAR (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.1$	2×10^{32}	50%	$5.0 imes 10^{31}$
E1039 (FNAL)	pNH_3^{\uparrow}	120	15	$0.1 \div 0.45$	4×10^{35}	15%	9.0×10^{33}
E1027 (FNAL)	$p^{\uparrow}H_2$	120	15	$0.35 \div 0.9$	2×10^{35}	60%	$7.2 imes 10^{34}$
NICA (JINR)	$p^{\uparrow}p$	collider	26	$0.1 \div 0.8$	1×10^{32}	70%	$4.9 imes 10^{31}$
fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	200	$0.1 \div 0.5$	8×10^{31}	60%	2.9×10^{31}
fsPHENIX (RHIC)	$p^{\uparrow}p^{\uparrow}$	collider	510	$0.05 \div 0.6$	6×10^{32}	50%	1.5×10^{32}
PANDA (GSI)	$\bar{p}H^{\uparrow}$	15	5.5	$0.2 \div 0.4$	2×10^{32}	20%	8.0×10^{30}

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 13 / 21

FT@(HL)LHC

May 7, 2019 14 / 21

• • • • • • • • • • • •

FT@(HL)LHC

May 7, 2019 14 / 21

イロト イポト イヨト イヨ

ALICE could also cover $\eta_{Lab} \sim 1 - 2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

FT@(HL)LHC

May 7, 2019 14 / 21

• • • • • • • • • • • • •

ALICE could also cover $\eta_{Lab} \sim 1 - 2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

· Both for LHCb and ALICE, the coverage depends on the target position

- ALICE could also cover $\eta_{Lab} \sim 1 2$ for quarkonia into dileptons with one muon in the muon arm and another in the central barrel
- · Both for LHCb and ALICE, the coverage depends on the target position
- Access towards large x crucial : EMC effect, spin and UHE neutrinos

D. Kikola et al. Few Body Syst. 58 (2017)

<ロト < 部 > < 注 > < 注 >

A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]

FT@(HL)LHC

• □ ▶ • • □ ▶ • □ ▶ • • □

D. Kikola et al. Few Body Syst. 58 (2017)

 A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution]

FT@(HL)LHC

• □ ▶ • • □ ▶ • □ ▶ • • □

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties] [FoM not degraded with a H-jet like solution]
- Also access on polarised neutron (³He[†]) at the per cent level for J/ψ !

Di- J/ψ allow one to study the k_T dependence of the gluon Sivers function for the very first time !

May 7, 2019 16 / 21

イロト イヨト イヨト イヨト

• Energy domain: between SPS and RHIC

May 7, 2019 16 / 21

イロト イヨト イヨト イヨト

- Energy domain: between SPS and RHIC
- Rapidity scan to scan through μ_B & T with a good PID (LHCb and ALICE)

- Energy domain: between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. χ_{c,b}, η_c) and on open charm and beauty

- Energy domain: between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states
 (e.g. χ_{c,b}, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations

- Energy domain: between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states
 (e.g. χ_{c,b}, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations

B.Trzeciak et al.Few-Body Syst (2017) 58:148

イロト イヨト イヨト イヨト

B.Trzeciak et al.Few-Body Syst (2017) 58:148

• Like for nPDF studies (see later), multiple quarkonium studies are needed

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline
- Statistical-uncertainty projections (accounting for background subtraction)

イロト イヨト イヨト イヨト

• Extremely promising first projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist $\stackrel{\infty}{\searrow}_{0}$ there. Projection done assuming that other nuclear effect are under control.]

イロト イヨト イヨト イヨト

• Extremely promising first projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist $\stackrel{\times}{\sim}$ there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

• Extremely promising first projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist $\stackrel{\times}{\sim}$ there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

Contrary to nPDF studies
 bearing on nuclear modification
 factors, one needs ways to reduce
 the systematical theory
 uncertainties

FT@(HL)LHC

• Extremely promising first projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist $\stackrel{\times}{\sim}$ there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

Contrary to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

Reward: unique constraints on gluon PDFs at high x and low scales

J.P. Lansberg (IPNO)
Part III

Conclusion and recommandations

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 20 / 21

• Three main themes push for a fixed-target program at the LHC

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement and connections with astroparticles

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

• Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
- 2 ways towards fixed-target collisions with the LHC beams

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

• R1

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- R1
- R2

- Three main themes push for a fixed-target program at the LHC
- The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

- Beyond QCD, M/EDM of heavy baryons : double-crystal FT LHC experiments
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- R1
- R2
- R3, ...

Part IV

Backup slides

J.P. Lansberg (IPNO)

FT@(HL)LHC

▶ ◀ Ē ▶ Ē ∽ Q (~ May 7, 2019 22 / 21

Qualitative comparison

	Internal gas target			Internal solid target	Beam	Beam
Characteristics	SMOG	Gas Jet	Storage Cell	with beam halo	splitting	extraction
Run duration	*	**	**	*	**	***
Parasiticity	**	**	**	*	**	***
Integrated luminosity	*	***	***	*	**	***
Absolute luminosity determination	*	**	**	*	**	***
Target versatility	*	**	**	*	**	***
(Effective) target polarisation	-	***	**	-	-/*	*
Use of existing experiment	***	**	*	**	**	-
Civil engineering or R&D	* * **	***	**	**	**	*
Cost	***	**	**	***	**	*
Implementation time	***	**	**	***	**	*
High x	*	***	* * **	*	**	* * **
Spin Physics	-	***	***	-	-/**	***
Heavy-Ion	*	***	***	**	**	* * **

Heavy-Ion Physics

- Estimation of the freeze-out parameters reachable in the AFTER@LHC project by V. Begun, D. Kikola, V. Vovchenko, D. Wielanek, Phys. Rev. C 98 (2018)
- Rapidity scan in heavy ion collisions at \sqrt{snn} = 72 GeV using a viscous hydro + cascade model by I. Karpenko: arXiv:1805.11998 [nucl-th]
- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s_{NN} = 115 GeV and Pb+p collisions at √s_{NN} = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

J.P. Lansberg (IPNO)

FT@(HL)LHC

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Exclusive vector meson photoproduction in fixed target collisions at the LHC by V.P. Goncalves, M.M. Jaime. Eur.Phys.J. C78 (2018) no.9, 693
- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- *Quarkonium production and proposal of the new experiments on fixed target at LHC* by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

FT@(HL)LHC

May 7, 2019 27 / 21