Experimental QCD at future pp & e⁺e⁻ colliders

"Strong interactions" ESPP Update Granada, May 2019 David d'Enterria (CERN)

Future pp & e⁺e⁻ colliders with QCD programme

Future proton-proton colliders:

- 1. HL-LHC: pp(14 TeV), 3 ab⁻¹ ESPPU input #110, #152
- 2. HE-LHC: pp(27 TeV), 10–15 ab⁻¹ ESPPU input #160
- 3. FCC-hh: pp(100 TeV), 20 ab⁻¹ ESPPU input #135

Future electron-positron colliders:

- 4. FCC-ee(*): e⁺e⁻(90,160,250,350 GeV), 1–100 ab⁻¹ *ESPPU input #160*Budker INP, Novosibirsk
- 5. SCT (Super Charm-Tau) Factory(**): e⁺e⁻(2–6 GeV), ~1 ab⁻¹ ESPPU input #132

[Note: Other QCD machines: DIS, heavy-ions and/or fixed-target, covered by other talks].

[Note: Also in principle CEPC(*), BELLE-II(**) but to be developed]

Strong Interactions, EPPS Update, May'19

QCD = Key piece at future ee, pp colliders

- Though QCD is not per se the main driving force behind future colliders, QCD is crucial for many pp, ee measurements (signals & backgrounds):
 - High-precision α_s : Affects all x-sections & decays (esp. Higgs, top, EWPOs).
 - NⁿLO corrs., NⁿLL resummations: For all precise pQCD x-sections & decays.
 - High-precision PDFs: Affects all precision W,Z,H (mid-x) measurements & all searches (high-x) in pp collisions.
 - Heavy-Quark/Quark/Gluon separation (subjet structure, boosted topologies..): Needed for all precision SM measurements & BSM searches with final jets.
 - Semihard QCD (low-x gluon saturation, multiple hard parton interactions,...):

Leading x-sections at FCC-pp (Note: $Q_0 \sim 10$ GeV at 100 TeV).

 Non-perturbative QCD: Colour reconnection affects e⁺e⁻ jetty final-states: e⁺e⁻ → WW → 4j, Z → 4j, tt (m_{ton} extraction). Parton hadronization, ...

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

(2) Parton Distribution Functions (HL-LHC, HE-LHC, FCC-hh)

(3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)

(4) Non-perturbative QCD (FCC-ee, SCT, HL-LHC)

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

(2) Parton Distribution Functions (HL-LHC, HE-LHC, FCC-hh)

(3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)

(4) Non-perturbative QCD (FCC-ee, SCT, HL-LHC)

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Importance of the QCD coupling α_s

• Least-known of couplings: $\delta \alpha \sim 10^{-10} \ll \delta G_{F} \ll 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{s} \sim 10^{-3}$ • Impacts all QCD x-sects.&decays. Leading param. uncert. H, t, EWPOS:

				Msbar mass error budget (from threshold scan)				
Process	σ (pb)	$\delta \alpha_s(\%)$	PDF + $\alpha_s(\%)$	Scale(%)	$(\delta M_{t}^{\rm SD-low})^{\rm exp}$	$(\delta M_{\star}^{\rm SD-low})^{\rm theo}$	$(\delta \overline{m}_{t}(\overline{m}_{t}))^{\text{conversion}}$	$(\delta \overline{m}_{+}(\overline{m}_{+}))^{\alpha_{s}}$
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32	40 MeV	50 MeV	7 – 23 MeV	70 MeV
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9	\Rightarrow improvement	nt in α_s crucial		$\delta\alpha_s(M_z) = 0.001$
Channel	$M_{ m H}[{ m GeV}]$	$\delta lpha_s(\%)$	Δm_b Δ	Δm_c	Quantity	FCC-ee futu	re param.unc.	Main source
$H \rightarrow c\bar{c}$	126	± 7.1	$\pm 0.1\%$ \pm	- 2.3 %	Γ_Z [MeV]	0.1	0.1	$\delta \alpha_s$
	104				R_b [10 ⁻⁵]	6	< 1	$\delta \alpha_s$
$H \rightarrow gg$	126	± 4.1	$\pm 0.1\%$ \pm	= 0 %	R_{ℓ} [10 ⁻³]	1	1.3	$\delta \alpha_s$

Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2018)

Determined today by comparing 6 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

[Bethke/Dissertori/Salam] April 2016 1) lattice $\alpha_{s}(Q^{2}$ \mathbf{v} τ decays (N³LO) △ DIS jets (NLO) Heavy Quarkonia (NLO) (2) τ decays • e⁺e⁻ jets & shapes (res. NNLO) 0.3 (e⁺e⁻) e.w. precision fits (N³LO) ∇ p(\overline{p}) -> jets (NLO) ▼ pp -> tt (NNLO) 3) PDFs 0.2 (4) e⁺e⁻ jets (shapes, rates) (e⁺e⁻) (5) Z,W decays (e^+e^-) (6) pp→ttbar (pp) 0.1 \equiv QCD $\alpha_{s}(M_{z}) = 0.1181 \pm 0.0011$ 1000 10 100 Q [GeV]

α_s via hadronic Z decays (FCC-ee)

• Computed at N³LO: $R_Z \equiv \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_Z^{EW} N_C (1 + \sum_{l=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_m + \delta_{np})$

 $\bullet \underline{\text{LEP}} \text{ Z pseudobservables: } R_{\ell}^{0} = \frac{\Gamma_{\text{had}}}{\Gamma_{\ell}}, \ \sigma_{\text{had}}^{0} = \frac{12\pi}{m_{Z}} \frac{\Gamma_{e}\Gamma_{\text{had}}}{\Gamma_{Z}^{2}}, \ \sigma_{\ell}^{0} = \frac{12\pi}{m_{Z}} \frac{\Gamma_{\ell}^{2}}{\Gamma_{Z}^{2}} \text{ (exp. unc. <0.1\%)}$

Also after Higgs discovery, α_s can be directly determined from full fit of SM:

Strong Interactions, EPPS Update, May'19

α_s via hadronic W decays (FCC-ee)

– TH (param.) uncertainty: $|\delta V_{cs}|$ to be significantly improved (10⁻⁴)

α_s from hadronic τ decays (SCT, FCC-ee)

• Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

♦ Experimentally: R_{τ,exp} = 3.4697 ± 0.0080 (±0.23%)

 Various pQCD approaches (FOPT vs CIPT) & treatment of non-pQCD corrections (note: (Λ/m_τ)² ~1%), yield different results.

Future prospects:

- Understand FOPT vs CIPT differences.
- Better exp. spectral functions needed (high stats & better precision): SCT: $\mathcal{O}(10^{10}) e^+e^- \rightarrow \tau\tau$ $\delta \alpha_s < 1\%$

FCC-ee: $\mathcal{O}(10^{11})$ from Z($\tau\tau$)

α_s running at the TeV scale (FCC-pp)

Proton-proton collisions above LHC energies provide the only known means to test asymptotic freedom & new coloured sectors above ~3 TeV:

Figure 5.5: Left plot: combined statistical and 1% systematic uncertainties, at 30 ab⁻¹, vs p_T threshold; these are compared to the rate change induced by the presence of 4 or 8 TeV gluinos in the running of α_S . Right plot: the gluino mass that can be probed with a 3σ deviation from the SM jet rate (solid line), and the p_T scale at which the corresponding deviation is detected.

• <u>FCC-pp</u>: – Jet cross sections with <10% stat. uncert. up to $p_T \sim 25$ TeV – <u>Sensitivity to m_a=4–8 GeV gluinos</u> in α_s running.

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

(2) Parton Distribution Functions (HL-LHC, HE-LHC, FCC-hh)

(3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)

(4) Non-perturbative QCD (FCC-ee, SCT, HL-LHC)

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Strong Interactions, EPPS Update, May'19

12/21

PDFs impact on new BSM / QCD physics

Improving PDFs with proton-proton data

6 partonic processes in pp at the LHC have provided key PDF constraints:

Strong Interactions, EPPS Update, May'19

Improved PDFs with pp data (HL-LHC)

Generation of HL-LHC pQCD pseudo-data (pp, 3 ab⁻¹):

Significant constraining power in many phase space regions.

Improved PDFs with pp data (HL-LHC)

dependence on projected systematics). But not at very low-,high-x...

Strong Interactions, EPPS Update, May'19

PDFs: Still work to do for FCC...

Still large PDF uncertainties in pp at 100 TeV in key (x,Q²) regions:

Strong Interactions, EPPS Update, May'19

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

(2) Parton Distribution Functions (HL-LHC, HE-LHC, FCC-hh)

(3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)

(4) Non-perturbative QCD (FCC-ee, SCT, HL-LHC)

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Strong Interactions, EPPS Update, May'19

18/21

Precise jet substruct. & flavour tagging (FCC-ee)

- State-of-the-art jet substructure studies based on angularities ("Sudakov"-safe) variables of jet constituents: multiplicity, LHA, width/broadening, mass/thrust, C-parameter,...
- k=1: IRC-safe computable (NⁿLO+NⁿLL) via SCET (but uncertainties from non-pQCD effects)

 κ (larger energy weigth)

MC parton showers differ on gluon (less so quark) radiation patterns:

Strong Interactions, EPPS Update, May'19

High-precision gluon & quark jet studies (FCC-ee)

- Exploit FCC-ee H(gg) as a "pure gluon" factory: H→gg (BR~8% accurately known) provides – O(100.000) extra-clean digluon events.
- Multiple handles to study gluon radiation & g-jet properties:
 - Gluon vs. quark via H→gg vs. Z→qq
 (Profit from excellent g,b separation)
 - Gluon vs. quark via Z → bbg vs. Z → qq(g) (g in one hemisphere recoiling against 2-b-jets in the other).
 - Vary E_{jet} range via ISR: $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow jj(\gamma)$
 - Vary jet radius: small-R down to calo resolution
- Multiple high-precision analyses at hand:
 - <u>BSM</u>: Improve q/g/Q discrimination tools
 - <u>pQCD</u>: Check NⁿLO antenna functions. High-precision QCD coupling.
 - <u>non-pQCD</u>: Gluon fragmentation: Octet neutralization? (zero-charge gluon jet with rap gaps). Colour reconnection? Glueballs ? Leading η's,baryons?

20/27

Highly-boosted partons (FCC-pp)

- Proton-proton collisions at 100 TeV provide uninque conditions to produce & study highly-boosted objects ($\theta < E_j/m_{jj}$): boosted tops, $R_{BSM} \rightarrow jj$, high- p_T Higgs studies,...
- MC-dependent quark vs. gluon jet (& jet radius) differences:

Strong Interactions, EPPS Update, May'19

α_s via e⁺e⁻ event shapes & jet rates (FCC-ee)

– Provides higher- \sqrt{s} data for rates & lower- \sqrt{s} for shapes:

– TH: Improved (N^{2,3}LL) resummation for rates & hadroniz. for shapes

Strong Interactions, EPPS Update, May'19

David d'Enterria (CERN)

 $\delta \alpha_{c} < 1\%$

High-precision parton FFs (FCC-ee)

Parton-to-hadron fragment. functions evolution known at NNLO at high-z &

Mathod	Current $\delta \alpha_{\rm s}({\rm m_z^2})/\alpha_{\rm s}({\rm m_z^2})$ uncertainty	Future $\delta \alpha_{\rm s}({\rm m_z^2})/\alpha_{\rm s}({\rm m_z^2})$ uncertainty			
Method	(theory & experiment state-of-the-art)	(theory & experiment progress)			
soft FFs	$1.8\%_{ ext{th}} \oplus 0.7\%_{ ext{exp}} pprox 2\%$	$0.7\%_{\rm th} \oplus 0.7\%_{\rm exp} \approx 1\% \; (\sim 2 \; {\rm yrs}), <\!1\% \; ({\rm FCC-ee})$			
Soft FFS	(NNLO ^{$*$} only (+NNLL), npQCD small)	(NNLO+NNLL. More precise e^+e^- data: 90–350 GeV)			
hand FFa	$1\%_{ m th} \oplus 5\%_{ m exp} pprox 5\%$	$0.7\%_{\text{th}} \oplus 2\%_{\text{exp}} \approx 2\%$ (+B-factories), <1% (FCC-ee)			
naru FFS	(NLO only. LEP data only)	(NNLO. More precise e^+e^- data)			

FCC-ee (much broader z range) allows for α_s extraction with $\delta \alpha_s < 1\%$

Strong Interactions, EPPS Update, May'19

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

(2) Parton Distribution Functions (HL-LHC, HE-LHC, FCC-hh)

(3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)

(4) Non-perturbative QCD (FCC-ee, SCT, HL-LHC)

<u>NOTE</u>: Only UNIQUE QCD measurements, inaccessible at any current machine, are covered.

Strong Interactions, EPPS Update, May'19

Colour reconnection (FCC-ee)

- Colour reconnection among partons in e⁺e⁻ = Source of uncertainty in m_w, m_{top}, CP-violating Higgs in multijet final-states: $e^+e^- \rightarrow WW(4j)$, Z(4j), tt Use e⁺e⁻ leptonic final-states to learn about CR: At LEP 2: hot topic (by QCD standards): 'string drag' effect on W mass Non-zero effect convincingly demonstrated at LEP-2 No-CR excluded at 99.5% CL [Phys.Rept. 532 (2013) 119] w LC But not much detailed (differential) information $\mathcal{O}(1)$ Thousand times more WW at FCC-ee Sjöstrand: turn the W mass problem around; use huge sample of semi-leptonic events to measure m_w $\Gamma_W \gg \Lambda_{\rm QCD}$ \rightarrow use as constraint to measure CR in hadronic WW CR Has become even hotter topic at LHC It appears jet universality is under heavy attack. ⊗ kinematics
 - Follow-up studies now underway at LHC.

High-stats ee \rightarrow other side of story

Also relevant in (hadronic) ee \rightarrow tt, and Z \rightarrow 4 jets

Fundamental to understanding & modeling hadronisation

Strong Interactions, EPPS Update, May'19

T. Sjöstrand, W. Metzger, S. Kluth, C. Bierlich

+ Overlaps → interactions? increased tensions (strangeness)? breakdown of string picture?

25/27

Other Non-pQCD (SCT, FCC-ee, HL-LHC)

- **High-precision low-p** $_{T}$ PID hadrons in e^+e^- allow for detailed studies:
 - Baryon & strangeness production. Colour string dynamics.
 - Final-state correlations (spin: BE, FD; momenta; space)
 - Bound state formation: Onia, multiquark states, glueballs, ...

Strong Interactions, EPPS Update, May'19

Summary: QCD at future pp & e⁺e⁻ colliders

The precision needed to fully exploit the future ee/pp/ep/eA/AA SM & BSM programs requires exquisite control of (n)pQCD, accessible in multiple, unique, high-stats, clean e⁺e⁻ & pp measurements:

Backup slides

HL-LHC QCD performances: jets, γ

- ATLAS projections for inclusive jet production at HL and HE-LHC, CMS projections for b-jet production at HL-LHC: including detailed study of systematic uncertainties:
 - * Potentially significant improvement in uncertainties at both low and high jet p_{\perp} demonstrated, depending on scenario considered.
 - ★ Extensive jet p_{\perp} reach: ~ 5 (9) TeV at HL (HE) LHC.

- ***** Increased *b*-jet reach: $p_{\perp} \sim 3$ TeV.
- * New regime: b-quark ~ massless w.r.t. high p_{\perp} jet large fraction of jets with $B + \overline{B}$ due to PS ($g \rightarrow b\overline{b}$): important to disentangle from b-quarks produced in hard subprocess.

- **\star Isolated photon: CMS** projections show extensive reach, $E_{\perp}^{\gamma} \sim 3(5)$ TeV for the HL(HE)-LHC. Increase by ~ 2-3 w.r.t. existing data.
- **★ Diphoton** production: predictions with cutting-edge **NNLO** theory. Significant increase in reach with HE-LHC again shown.

QCD physics at future pp & e⁺e⁻ machines

- 1. High-precision α_s (parametric uncertainty on BSM via "SM stress tests"):
 - Via σ (ttbar), σ (W,Z) in p-p at HL-LHC, HE-LHC, FCC-hh
 - Via $BR_{had}(\tau, W, Z)$ and jets shapes/rates/FFs in e⁺e⁻ at FCC-ee (via tau at SCT)
- 2. High-precision PDFs (impact on precision SM & high-x BSM searches):
 - Via d σ (W,Z,jets,ttbar, γ) in p-p at HL-LHC, HE-LHC, FCC-hh
- 3. Heavy-Q/quark/gluon separation, jet substructure:
 - Via jet observables in p-p at HL-LHC, HE-LHC, FCC-hh (boosted topologies)
 - Via jet observables in e^+e^- at FCC-ee
- 4. Soft gluon resummations (improvements of MC parton showers):
 - Via $d\sigma/dp_{\tau}$ (ttbar,Z,W,H) in p-p at HL-LHC, HE-LHC, FCC-hh
 - Via various jet observables in e^+e^- at FCC-ee
- 5. Semi-hard QCD (low-x gluon saturation, multiple hard parton interactions,...):
 - Via various observables in p-p at HL-LHC, HE-LHC, FCC-hh
- 6. Non-perturbative QCD (hadronization, onia bound states, colour reconnection):
 - Via multiple observables in p-p at HL-LHC, HE-LHC, FCC-hh
 - Via jet FFs, CR via $e^+e^- \rightarrow WW \rightarrow 4j$ at FCC-ee

$\sigma(c\overline{c})$: Data vs. NNLO (MMHT14, NNPDF3.0)

Strong Interactions, EPPS Update, May'19

31/27

CERN FCC-ee project

• e⁺e⁻ option (before pp) at √s = 90, (125), 160, 240, 350 GeV

$\sqrt{\mathrm{s}}$ (GeV):	<mark>90 (Z)</mark>	125 (eeH)	160 (WW)	240 (HZ)	$350~(tar{t})$	$350 (WW \rightarrow H)$
σ	43 nb	290 ab	4 pb	200 fb	0.5 pb	25 fb
$L/IP \ (cm^{-2} s^{-1})$	10^{36}	$5 \cdot 10^{35}$	10^{35}	$7 \cdot 10^{34}$	$1.5 \cdot 10^{34}$	$1.5 \cdot 10^{34}$
$\mathcal{L}_{\mathrm{int}} \; (\mathrm{ab}^{-1}/\mathrm{yr}, 2 \; \mathrm{IPs})$	50	10	8	1.8	0.5	0.35
Events/year (2 IPs)	10^{12}	3.10^{3}	3.10^{7}	$3 \cdot 10^5$	$2.5 \cdot 10^5$	10^{4}
Years needed (2 IPs)	4	1.5	1	3	0.5	4
# of light-q jets/year:	$\mathcal{O}(10^{12})$	—	<i>O</i> (10 ⁷)	<i>O</i> (10⁵)	—	-
# of gluon-jets/year:	$O(10^{11})$	<i>O</i> (10²)	$\mathcal{O}(10^6)$	$O(10^4)$	-	<i>O</i> (10 ³)
# of heavy-Q jets/yr:	$O(10^{12})$	$\mathcal{O}(10^3)$	<i>O</i> (10 ⁷)	$\mathcal{O}(10^5)$	<i>O</i> (10⁵)	<i>O</i> (10⁴)

QCD in e⁺e⁻ collisions

e⁺e⁻ collisions provide an extremely clean environment with fullycontrolled initial-state to very precisely probe q,g dynamics:

Strong Interactions, EPPS Update, May'19

Advantages compared to p-p collisions:

- QED initial-state with known kinematics
- Controlled QCD radiation (only in final-state)
- Well-defined heavy-Q, quark, gluon jets
- Smaller non-pQCD uncertainties: no PDFs, no QCD "underlying event",...
 Direct clean parton fragmentation & hadroniz.
 - Plus QCD physics in $\gamma \gamma$ (EPA) collisions:

Parton lumis at FCC "precision" region

• "Precision" region at FCC-pp: **5–7%** PDF uncertainty for $\sigma(W,Z,H)$

14 TeV

Strong Interactions, EPPS Update, May'19

QCD physics at future pp & e⁺e⁻ machines

(1) QCD coupling (FCC-ee, FCC-pp, SCT)

- (2) PDFs (HL-LHC, HE-LHC, FCC-hh)
- (3) Jet substructure & flavour tagging (FCC-ee, FCC-pp)
- (4) Beyond DGLAP (FCC-pp, FCC-hh)

(5) Non-perturbative QCD (FCC-ee, FCC-hh)

<u>NOTE</u>: Only UNIQUE QCD measurements, not accessible at any current machine, are covered.

Strong Interactions, EPPS Update, May'19

α_s from γ QCD structure function

2009/04/25

10

 10^{4} Q² [GeV²]

Reduced QCD uncertainties on EWK observables

- With ×10⁵ more Z's than LEP, EWK uncertainties at FCC-ee will be dominated by syst. (QCD). Example: e⁺e⁻→bb forward–backward asymmetry
 - 8 measurements at LEP:
 - 4 lepton-based, 4 jet-charge-based
 - Exp. observable with largest discrepancy today wrt. the SM: 2.8σ
- Exp. Uncertainties: ~1.6%
 - Statistical: ±1.5% (~0.05% at FCC-ee)
 - Systematics: ±0.6% (QCD-related: ±0.4%)
- QCD effects on A^{0,b}_{FB} (depending strongly on exp. selection procedure):
 - Gluon splitting (TH control: α_s^2 corrections)
 - Smearing of b-jet/thrust axis
 - b and c radiation & fragmentation. B and D decay models.
 [Uncertanties estimated by Abbaneo et al., EPJC 4 (1998)]
- We have revisited the impact of QCD effects on A^{0,b}_{FB} implementing original analyses in up-to-date retuned parton-shower+hadronization MCs

Strong Interactions, EPPS Update, May'19

h

David d'Enterria (CERN)

 e^+

Reduced QCD uncertainties on A_{FB} at Z pole

■ QCD uncertainties recomputed from PYTHIA8.226 (7 tunes) & VINCIA2.2 ■ $e^+e^- \rightarrow bb$ forward—backward asymmetry for lepton-based analyses:

$e^+e^- \rightarrow bb$ forward–backward asymmetry for jet-charge-based analyses:

2018 vs. 1998 PS+hadronization uncertainties:

- Lepton-based: Consistent for ALEPH/DELPHI, smaller for L3, larger for OPAL.
- Jet-charge-based: Consistent for DELPHI, smaller for ALEPH/L3/OPAL.
- LEP average to be recomputed (likely no change as stat.unc. dominates)

Strong Interactions, EPPS Update, May'19