Precision QCD at low energies

Gratefully acknowledge input from

- A. Antognini
 C. Crawford
 B. Märkisch
 C. Curceanu
 G. Pignol
 A. Denig
 J. Pretz
 E. Downie
 M. Snow
 - D. Gotta S. Ulmer

Klaus Kirch, ETH Zürich – PSI Villigen, Switzerland

Klaus Kirch

Input to the ESPP Process

related in some way to low energy QCD

- ID6: Gamma factory for CERN
- ID18: EDM storage ring
- ID20: PBC Conventional Beams
- ID39: ISOLDE at CERN
- ID42: PBC at CERN
- ID76: J-PARC facilities and physics
- ID86: PIK reactor
- ID115: Hadron Physics Opportunities in Europe
- ID118: MUonE experiment
- ID121: PSI facilities and physics
- ID123: Electric dipole moment community input
- ID143: A New QCD Facility at the M2 beam line of the CERN SPS
- ID147: PERLE High Power Energy Recovery Facility
- ID148: NuPECC input
- ID163: QCD Theory Input
- ID164: ESS

QCD is a pillar of the Standard Model

- 19 param., masses, couplings, mixings, CP phases, θ_{QCD}, Higgs vev
- 7+ more with the inclusion of neutrino masses and mixings
- measure all parameters and fundamental interactions as accurately and precisely as possible!

QCD is responsible for

the hadron masses

- The description of the hadron spectrum is **not** topic of this talk.
- The masses of the lightest mesons and baryons are being measured with much higher precision than calculable today.
- Precision comparisons of theory and experiment remain dreams for the future
- Precision data provide benchmark fundamental constants and allow for sensitive SM tests.

MASS of the CHARGED PION

Future programme and perspectives at DAΦNE and J-PARC

Courtesy: C. Curceanu

- Kaon mass precision measurement at a level
 < 3-5 keV by low-Z kaonic atoms
- Kaonic helium transitions to the 1s level
- Other light kaonic atoms (K⁻O, K⁻C,...)
- Heavier kaonic atoms (K⁻Si, K⁻Pb...)
- Radiative kaon capture Λ(1405) study
- Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)
- Studies of kaon-nuclei interactions at lowenergies (E15 at J-PARC and AMADEUS at DAFNE)

More infos: "The modern era of light kaonic atom experiments" to appear (June 2019) in Reviews of Modern Physics https://journals.aps.org/rmp/accepted/fb072Ed7Eb71590f30186b940e9d8107023ce0960

Kaon mass problem

Antiproton/Proton Charge-to-Mass Ratio

Inspired by work of TRAP collaboration (G. Gabrielse et al., PRL 82, 3199(1999).)

- Applied two particle fast shuttling scheme to measure proton/antiproton q/m ratio using antiprotons and hydrogen ions (perfect proxies / low systematics)
- New method is 50 times faster than classical mass spectrometry techniques.

Result of 6500 proton/antiproton Q/M comparisons:

 $\frac{(q/m)_{\overline{p}}}{(q/m)_{p}} - 1 = 1(69) \times 10^{-12}$

Courtesy: S. Ulmer

Measurements at the level of 10 ppt to 20 ppt in reach.

QCD and magnetic moments

- Largest uncertainties in the muon anomalous magnetic moment (g-2)
 - thrilling SM BSM result

See talk by G. Schnell covering MUonE

- huge challenge to calculations and experiments
- Completely dominating baryon «anomalous magnetic moments»
 - high precision measurements far beyond QCD
 - benchmarks and BSM tests

muon g-2 projects at FNAL (data taking) and J-PARC (constructing)

Goal: Be ready for the interpretation of the upcoming FNAL $(g-2)_{\mu}$ experiment

- **HVP**: Leading contribution in dispersion integral $e+e- \rightarrow \pi+\pi$ still not entirely understood, work in progress, measure relevant channels
- HLbL: Huge experimental progress in measurement of TFFs
- Lattice QCD: recent progress both for HVP and HLbL contributions worldwide effort by various groups accuracy still below phenomenological data-driven approaches hybrid approach for HVP (combine lattice and data-driven calculations)

See talk by H. Wittig on lattice QCD

Muon (g-2) Theory Initiative: Coordinated effort (theory & expt.) to provide an updated theory Standard Model prediction of $(g-2)_{\mu}$

Courtesy: A. Denig

The Magnetic Moment of the Antiproton

Experiments on single protons and antiprotons in Penning traps

Using two particles in a mulit trap setup and

- a newly invented measurement scheme, the antiproton magnetic moment was determined with a precision on the ppb level.
- non-destructive spin quantum spectroscopy methods

Measurement improves previous best measurement by other collaborations by a factor of > 3000.

2.792847350(9)

2.7928473441(42)

A. Mooser et al., Nature 509, 596 (2014)

C. Smorra et al., Nature 550, 371 (2017)

BASE 2017: μ_p= -2.792 847 344 1 (42) μ_{nucl}

first measurement more precise for antimatter than for matter...

Further improvements: factor of 5 in reach, factor of 200 possible.

Courtesy: S. Ulmer

The neutron magnetic moment

Courtesy: G. Pignol

The neutron magnetic moment precision will be improved as a byproduct of the n2EDM experiment at PSI

QCD and nucleon form factors

- electric and magnetic form factors at lowest momentum transfer:
 See talk by G. Schnell
 - proton charge radius

- covering COMPASS++
- proton Zemach and magnetic radius
- weak nucleon form factors
 - axial coupling constant g_A
 - axial radius r_A

The proton radius puzzle

Present status

ep scattering experiments

MUon Scattering Experiment at the Paul Scherrer Institute E Downie, G Ron, S Strauch, R Gilman et al.

- Simultaneous measurement of e and µ elastic scattering on proton
- Can access both polarities determination of 2-photon effects
- Assembly of full system completed in Dec. 2018.
- Beam studies summer 2019; production data taking begins Dec 2019

with additional support from

The hyperfine splitting in μp

Hyperfine splitting theory and goals

Measure for the first time the 1S-HFS in μp and $\mu He+$ and compare them with the theoretical predictions

$$\Delta E_{\rm HFS}^{\rm th} = 182.819(1) - \underbrace{1.301R_Z + 0.064(21)}_{\rm TPE} \text{ meV}$$

$$R_Z = \int d^3 \vec{r} \, |\vec{r}| \int d^3 \vec{r'} \rho_E(\vec{r} - \vec{r'}) \rho_M(\vec{r'})$$

$$M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy}}$$

$$3 \text{ experimental efforts:} \\ at PSI, J-PARC, RAL$$

$$Polarizability \\ <10\% \text{ relative accuracy} \\ \downarrow \\ Polarizability \\ from theory \\ \end{bmatrix}$$

$$M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu He \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easure the 1S-HFS in \,\mu p and \,\mu he \\ \text{with 1 ppm accuracy} \\ \downarrow \\ M_{easurethe 1S$$

New perspective on nucleon axial form factor

Nucleon axial radius and muonic hydrogen a new analysis and review R J Hill , P Kammel, W J Marciano and A Sirlin Rep. Prog. Phys. **81** (2018) 096301

$$g_A(q^2) = g_A(0)(1 + \frac{1}{6}r_A^2q^2 + \dots)$$

• Nucleon axial radius r_A has surprisingly large uncertainty

$$r_A^2(z~{
m exp.}) = 0.46 \pm 0.22~{
m fm}^2$$

- basic nucleon property
- doubles uncertainty in CCQE vn→pµ cross section prediction (important for DUNE, T2HK)
- Problem and opportunity for muon capture
 - Can g_P still be reliably extracted from MuCap?
 - Can one use MuCap to extract the axial radius?

 $u_{\mu}d \rightarrow \mu^{-}pp$

2% for MuCap

Phys.Rev. D93 113015, (2016)

Courtesy: P. Kammel

Axial Coupling from Neutron Decay

Determination of $\lambda = g_A/g_V$ from neutron decay via angular correlation coefficients: (typically) beta asymmetry *A*, or electron-neutrino correlation *a*

e.g. via proton spectrum

Neutron Decay Experiments

UCNA / UCNB A, B, b Los Alamos

Courtesy: B. Märkisch

Axial Coupling: Status

New result by PERKEO III (arXiv:1812.04666): $\lambda = -1.27641(56)$, $\frac{\Delta\lambda}{\lambda} = 4.4 \times 10^{-4}$ UCNA and PERKEO III: blinded analysis. All new measurements consistent.

Axial Coupling: Prospects

Strong efforts to improve: Goal $O(10^{-4})$ and below. New beamlines and sources: FRM, Garching; SNS, Oak Ridge; ESS, Lund;

Axial Radius and Muon Capture Review

- Theory improvements
 - Theory uncertainties in Λ_S reduced to 0.2% level. (ignoring r_A^2 input uncertainty)
- g_P determination from muon capture
 - $-\Delta r_A^2$ dominates uncertainty in g_A and g_P from theory.
 - MuCap still provides QCD test at 8% level:

$$g_P^{
m theory}/g_P^{
m MuCap} = 1.00(8)$$

- r_A^2 determination from muon capture
 - Use EFT expression and $g_{\pi NN}$

$$g_p(q^2) = \frac{2m_\mu g_{\pi NN}(q^2) F_\pi}{m_\pi^2 - q^2} - \frac{1}{3}g_a(0)m_\mu m_N r_A^2$$

- 0.3% future precision measurement of Λ_S would reduce
 - Δr_A^2 from 0.22 to 0.09 fm².
 - uncertainty in QE $\sigma(vd)$ by factor ~2.

Courtesy: P. Kammel

Muon Capture

Elementary targets for LBL experiments

DUNE/T2HK •

Katori and Martini, J. Phys. G: Nucl. Part. Phys. 45 (2018) 013001

10

TOTAL

 10^{2}

- Neutrino Scattering Theory Experiment Collaboration
 - <u>http://nustec.fnal.gov</u>

Review

NuSTEC¹ White Paper: Status and challenges of neutrino-nucleus scattering

1.4

1

0

10-1

- INT Workshop INT-18-2a From nucleons to nuclei: enabling discovery for neutrinos, dark matter
 - Elementary neutrino-nucleon amplitudes
 - Study H_2/D_2 target option recommended by DUNE board

QCD in basic hadronic interactions

- Scattering lengths, hadronic atoms
 - πp, πd
 - Kp, Kd
 - p̄p (→ backup)

See talk by G. Schnell covering DIRAC++

Hadronic weak interactions

■ The weak NN-potential is complementary to strong physics in hadronic and nuclear physics, and forms independent tests of both experimental nuclear reactions, and Lattice QCD calculations. (→ backup)

PIONIC HYDROGEN LEVEL SHIFT ε_{1S} and **BROADENING** Γ_{1S}

^{*} J. Gasser et al., Phys. Rep. 456 (2008) 167 M. Hoferichter et al., Phys. Lett. B 678 (2009) 65

V. Baru et al., Phys. Lett. B 694 (2011) 473

πN ISOSPIN SCATTERING LENGTHS a⁺ and a⁻

FIG. 2: Combined constraints in the $\tilde{a}^+ - a^-$ plane from data on the width and energy shift of πH , as well as the πD energy shift.

 χPT: J. Gasser et al., Phys. Rep. 456 (2008) 167
 M. Hoferichter et al., Phys. Lett. B 678 (2009) 65
 V. Baru et al., Phys. Lett. B 694 (2011) 473
 data: πH - R-98.01 : D. Gotta et al., Lect. Notes Phys. 745 (2008) 165 M. Hennebach et al., Eur. Phys. J. A 50 (2014) 190
 πD - R-06.03 : Th. Strauch et al., Eur. Phys. J. A 47 (2011) 88

$$\epsilon_{\pi D}$$
 decisive constraint

...

Outlook

<u>large discrepancy</u> between pionic-atoms analysis and $a^{+} = -15 \cdot 10^{-3} M_{\pi}^{-1}$ from lattice σ - term Hoferichter et al., arXiv: 1602.07688v2

Hoferichter et al., arXiv: 1602.07688v2 Crivellin et al., Phys. Rev. D 89, 054021 (2014) Ellis et al., Phys. Rev D,065026 (2008)

> high statistics experiment of πH(4-1) and πH(5-1) lines: <u>less</u> Coulomb de-excitation

> > $\Delta\Gamma/\Gamma$ 3% \rightarrow 1%

πN ISOSPIN SCATTERING LENGTHS a⁺ and a⁻

FIG. 2: Combined constraints in the $\tilde{a}^+ - a^-$ plane from data on the width and energy shift of πH , as well as the πD energy shift.

χPT: J. Gasser et al., Phys. Rep. 456 (2008) 167
 M. Hoferichter et al., Phys. Lett. B 678 (2009) 65
 V. Baru et al., Phys. Lett. B 694 (2011) 473
 data: πH - R-98.01 : D. Gotta et al., Lect. Notes Phys. 745 (2008) 165
 M. Hennebach et al., Eur. Phys. J. A 50 (2014) 190
 πD - R-06.03 : Th. Strauch et al., Eur. Phys. J. A 47 (2011) 88

consistency

$$\epsilon_{\pi D}$$
 decisive constraint

a⁺ > 0 .

Outlook

<u>large discrepancy</u> between pionic-atoms analysis <u>and</u> $a^{+} = -15 \cdot 10^{-3} M_{\pi}^{-1}$ from lattice σ^{\ddagger} term Hoferichter et al., arXiv: 1602.07688v2

Crivellin et al., Phys. Rev. D 89, 054021 (2014) Ellis et al., Phys. Rev D,065026 (2008)

> - high statistics experiment of π H(4-1) and π H(5-1) lines: <u>less</u> Coulomb de-excitation

> > $\Delta\Gamma/\!\!T~\mathbf{3\%} \rightarrow \mathbf{1\%}$

*precise knowledge of the πN σ -term is important for many experiments from DM direct detection to $\mu \rightarrow e$ conversion

Exotic atoms at DAΦNE SIDDHARTA-2 experiment:

Kaonic deuterium in 2019-2020:

800 pb⁻¹ to perform the first measurement of the strong interaction induced energy shift and width of the kaonic deuterium ground state (similar precision as K⁻p) with new <u>SDD</u> <u>detectors</u> Theories and SIDDHARTA-2 precision

Klaus Kirch

Concluding remarks I

- Strong interaction between theory and low energy experiments needed
- Support next generation facilities (2022-30) in Europe, in particular
 - New high intensity e⁻ machines like PRAE and MESA
 - Cold neutron beam for particle physics at ESS
 - Higher intensity sources of UCN: ILL, PSI, FRM2, PNPI
 - Proton EDM demonstrator storage ring
 - Facilities with slow antiprotons, pions, kaons
 - New High intensity Muon Beam HiMB at PSI

Concluding remarks II

- Diverse university/national/international facilities
- Multiple physics aspects involved in experimental project
- Tackling hot topics in particle physics with unique reach
- Small to mid-size collaborations in which young scientists can assume responsibility and excell
- Perfect environment for broad particle physics education
- Complementing huge multi-decade-long efforts
- Development of a variety of technologies
- Interfaces to other fields, especially nuclear, astroparticle and atomic physics

The proton radius puzzle

- measure elastic σ with 1% acc.
- Statistics: ok
- Challenge: small sensitivity
- Challenge: extrapolation to Q2=0

Laser spectroscopy in H

- 4σ discrepancy only with least square adjustment
- High-precision laser spectroscopy
- Challenge: systematic effects for large n-states

Laser spectroscopy in µp

 $\begin{aligned} \Delta E_{\text{size}} &= \frac{2\pi (Z\alpha)}{3} r_{\text{p}}^2 |\Psi_{nl}(0)|^2 \\ &= \frac{2(Z\alpha)^4}{3n^3} m_r^3 r_{\text{p}}^2 \,\delta_{l0} \end{aligned}$

- High sensitivity to proton radius
- Challenge: statistics (laser power, muon rates)

Courtesy: A. Antognini

Why is the **µp** theory reliable?

Pachucki, Borie, Eides, Karschenboim, Jentschura, Martynenko, Indelicato Pineda, Miller, Karrol... Hill, Paz, arXiv:1611.09917 Birse, McGovern, arXiv1206.3030 Hagelstein et al., arXiv:1512.03765 Peset and Pineda, arXiv:1406.4524

Alpha-particle and helion radii from **µHe⁺** spectroscopy

Extraction of these charge radii from muonic helium is limited by the polarisability contributions.

MUSE: Muon scattering (ongoing at PSI)

MUSE: an impressive setup ready to go

MUSE Notes

Courtesy: E. Downie

- All detector and DAQ components installed on experiment platform. All detector systems read out in < 100 µs.
- Five planes of the beam hodoscope to identify beam particle types.
 Time resolution up to 80 ps with ~ 99.8% efficiency.
- GEM detectors determine incident particle tracks with ~ 98% efficiency and < 100 µm resolution.
- **Cryotarget** fully operational. Hydrogen temperature stable to ~ ±0.01 K.
- Straw-tube tracker operated with low noise using PASTTREC cards for readout. Determines outgoing tracks with 99.9% tracking efficiency and ~ 150 µm position resolution.
- Scattered Particle Scintillator walls commissioned with average time resolutions ~ 45 ps and 55 ps for the rear and front walls, respectively.
- **Beam monitor** scintillators commissioned with up to 30 ps time resolution.

$NN \Leftrightarrow \pi NN$ threshold parameter α

PROTONIUM - SEARCH for HFS

ELEAR-type beams

Kaonic atoms spectroscopy: overview and perspectives

- Kaonic atoms are fundamental tools for studying the QCD with strangeness in nonperturbative regime, to investigate:
- Explicit and spontaneous chiral symmetry breaking
- **Role of strangeness in Neutron Stars (EOS)**

Kaonic atoms research is being performed at:

- DAΦNE collider at LNF-INFN (Italy): SIDDHARTA, SIDDHARTA-2 experiments
- J-PARC in Japan: E57 and E62 experiments

Kaonic atom cascade to the fundamental level where the strong interaction shifts and broadens the level -> measured by X ray spectroscopy

SIDDHARTA performed the most precise measurement of kaonic hydrogen: Phys. Lett. B704 (2011), 113; of kaonic helium-3 and -4, Phys. Lett. B 681 (2009), 310, Phys. Lett. B 697(2011) 19, Eur.Phys.J. A50 (2014) 91

Hadronic Weak							Interaction				
$A_{P}^{n, He} \approx \langle \vec{\nabla}_{n} \cdot \vec{k}_{P} \rangle$					Ø P	Coe	ff	DDH			
Kn Ste Op					Juclear	$\Lambda_0^{1} {}^{S_0-}_{DL}$ $\Lambda_0^{3} {}^{S_1-}_{DL}$ $\Lambda^{1} {}^{S_0-}_{DL}$	$\begin{array}{ccc} \Lambda_{0\ DDH}^{1S_{0}-3P_{0}} & -g_{\rho}h_{\rho}^{0}(2+\chi_{V}) - g_{\omega}h_{\omega}^{0}(2+\chi_{S}) \\ \Lambda_{0\ DDH}^{3S_{1}-1P_{1}} & g_{\omega}h_{\omega}^{0}\chi_{S} - 3g_{\rho}h_{\rho}^{0}\chi_{V} \\ \Lambda_{0\ DDH}^{1S_{0}-3P_{0}} & g_{\omega}h_{\omega}^{1}\chi_{S} - 3g_{\rho}h_{\rho}^{0}\chi_{V} \end{array}$				
Courtesy: C. Crawford				<nucle< th=""><th colspan="3">nuclear structure> $\Lambda_1 DDH$</th><th colspan="3">$-g_{\rho}n_{\rho}(2+\chi_V) - g_{\omega}n_{\omega}(2+\chi_S)$</th></nucle<>	nuclear structure> $\Lambda_1 DDH$			$-g_{\rho}n_{\rho}(2+\chi_V) - g_{\omega}n_{\omega}(2+\chi_S)$			
$P_{1}(I=0)^{3}P_{1}(I=1)^{3}P_{0}(I=1)$ λ_{t} P_{t} λ_{s} Hadroni							$DH^{11} = \frac{1}{\sqrt{2}}g_{\pi N}$ $\frac{^{3}P_{0}}{DH}$	$ \begin{array}{c} \frac{1}{\sqrt{2}}g_{\pi NN}h_{\pi}^{1}\left(\frac{m_{\rho}}{m_{\pi}}\right) +g_{\rho}(h_{\rho}^{1}-h_{\rho}^{1\prime}) -g_{\omega}h_{\omega}^{1} \\ \frac{1}{\sqrt{2}}g_{\pi NN}h_{\pi}^{1}\left(\frac{m_{\rho}}{m_{\pi}}\right) +g_{\rho}(h_{\rho}^{1}-h_{\rho}^{1\prime}) +g_{\rho}(h_{\sigma}^{1}-h_{\rho}^{1\prime}) +g_{\rho}(h$			
$^{3}S_{1}(I=0)$ $^{1}S_{0}(I=1)$ $^{3\pi}$ $^{$											
Α	Obs	Result	(10 ⁻⁷) *	$\Lambda_0^{S_0^1 - P_0^3}$	$\Lambda_1^{S_0^1 - P_0^3}$	$\Lambda_2^{S_0^1-P_0^3}$	$\Lambda_0^{S_1^3 - P_1^1}$	$\Lambda_1^{S_1^3 - P_1^3}$	Impr	ovement	
2	A_L^{pp}	419	<u>+</u> 43 *	1	1	0.4088			4	$ec{p}$ ring	
	A_{γ}^{np}	-0.3	<u>+</u> 0.14					-3.70E-04	4	ESS	
	P_{γ}^{np}	1.8	<u>+</u> 1.8	-0.00012		0.00154	0.00105		9	ILL/ESS	
	$d\phi/dz^{np}$	_	_	0.015		0.016		-0.011	∞	NG-C /ESS	
3	A_L^{pd}	-0.35	<u>+</u> 0.85	-0.001	-0.0007	-0.0002	-0.0008		4	$ec{p}$ ring	
	A_{γ}^{nd}	78	<u>+</u> 34	0.0139	-0.0055	-0.0035	0.0037	0.0024	22-35	ILL/ESS	
4	$A_p^{n^3He}$	0.117	<u>+</u> 0.093	7.18E-04	-2.25E-03	6.26E-05	-4.68E-04	-6.24E-04	4	ESS	
5	$A_L^{p\alpha}$	-3.3	<u>+</u> 0.9	-0.00355	-0.00317		-0.00268	-0.00114	4	$ec{p}$ ring	
	$d\phi/dz^{n\alpha}$	1.7	<u>+</u> 9.1	0.0138	-0.0087		0.0033	-0.0033	9-16	NG-C /ESS	
18	P_{γ}^{18F}	0	<u>+</u> 5100		36.3			15			
19	A_{γ}^{19F}	-740	<u>+</u> 190	-1.12	-0.75		-0.48	-0.32			

Storage ring EDM precursor experiment at COSY

Courtesy: J. Pretz

- first step in staged approach
- performed at magnetic storage ring COSY at Forschungszentrum Jülich
- in a magnetic storage ring EDM just causes a tiny oscillation of the vertical polarization component (This effect was used in the muon g 2 experiment)
 vertical pol.

 The operation of a radio-frequency Wien filter at the spin precession frequency allows for a build-up of the vertical polarization due to an EDM

vertical pol.

slope $\propto \text{EDM}$

Current Status

- At this stage the observed build-up is mostly attributed to systematic effects (e.g. misalignment of magnets and beam position monitors causing deviations from the design orbit).
- Work is going on to minimize these effects using beam based alignment and quantify them with the help of simulations.
- The goal is to perform with COSY a first EDM measurement with a precision similar to the one of the muon, i.e. $10^{-19} e$ cm.
- It should also be clear that gaining further orders of magnitude in precision is only possible with a dedicated storage ring using counter rotating beams where many systematic effects mentioned above cancel.

Klaus Kirch

Hadronic Vacuum Polarization Contribution

Unclear situation regarding dominating 2π contribution (~70% of total HVP)

Outlook:

- Reanalysis BABAR ISR 2π result
- New ISR analyses from BES III, BELLE II
- Energy scan data from Novosbirsk
- --> Potential to further reduce HVP contrib., clarification of 2π puzzle
- New idea: determine HVP from eµ scattering (~10⁻⁵ accuracy required)

Hadronic Light-by-Light Contribution

Leading contribution is pole contribution from π^0 $\mathsf{a}_{\mu}^{\mathsf{HLbL};\pi^{0(1)}} = \int_{0}^{\infty} \mathsf{d}\mathsf{Q}_{1} \int_{0}^{\infty} \mathsf{d}\mathsf{Q}_{2} \int_{-1}^{1} \mathsf{d}\tau \ \mathsf{w}_{1}(\mathsf{Q}_{1},\mathsf{Q}_{2},\tau) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-\mathsf{Q}_{1}^{2},-(\mathsf{Q}_{1}+\mathsf{Q}_{2})^{2}) \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-\mathsf{Q}_{2}^{2},0)$ Weighting **Transition form factor** 3D integral representation function dominating Q² gamma-gamma reactions (e+e-) range below ~2 GeV² Meson Dalitz decays 0.25 **Outlook**: CELLO 91 - CLEO 98 Development of data-driven theory 0.2 [dev] 0.15 programme (Bern, Mainz)

² IF(Q²)I

0.1

0.05

0

0.5

New BES III data of

pion transition form factor

in relevant Q² range

15

Momentum Transfer Q^2 [GeV²]

- gamma-gamma TFF programme at BES III in relevant Q² range
- Huge expt. effort at meson factories (SPS-CERN, MAMI, BES III, ...)
- High-Q² data at BELLE-II
- Ultimate goal: double-tag measurements
 Courtesy: A. Denig

 Stability of charge-to-mass ratio measurements was improved by a factor of 3

• Measurements at the level of 10 ppt to 20 ppt in reach.

Proton magnetic moment measurement methods reached sub ppb resolution

• Factor of 5 in reach, factor of 200 possible.

QCD at low energies

Klaus Kirch

ESPP Granada, May 14, 2019

