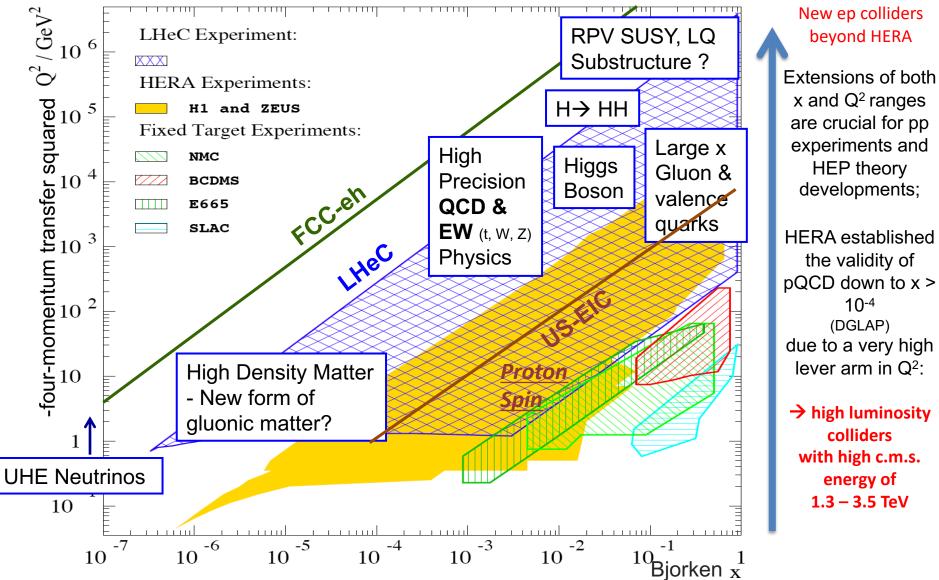
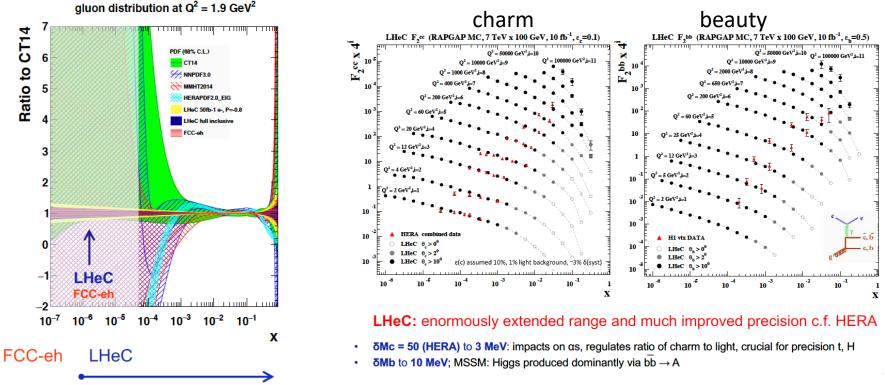
Opportunities and challenges for QCD physics in high-energy ep collisions at future facilities

Uta Klein



on behalf of the LHeC/FCC-eh Study Group

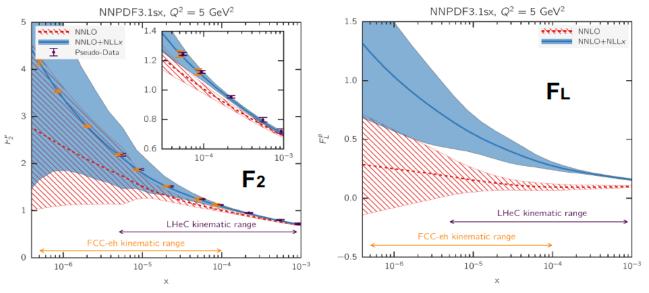
Granada Preparation Meeting, April 15th, 2019


The ep Physics at the Energy Frontier

and unfold hadron sub-structure for LHC and FCC-hh unambiguously

1) "DGLAP" proton (sub) structure

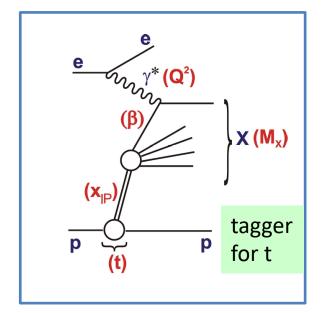
- Significant extension of HERA2.0 + jets : 1-year of LHeC means 10 times luminosity of 15-years-HERA
- N³LO DIS theory framework
- New world of heavy quark PDFs; s, c, b, t \rightarrow clarification of HFL schemes
- High precision strong coupling measurement to per mille



2) Parton dynamics

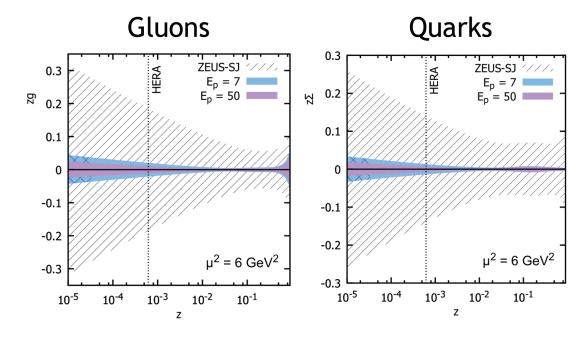
- Low x resummation, BFKL, gluon saturation unveiled via precision structure function measurements of F_2 and F_L
- Test of momentum sum rule via precision high and low x data

gluon at small x

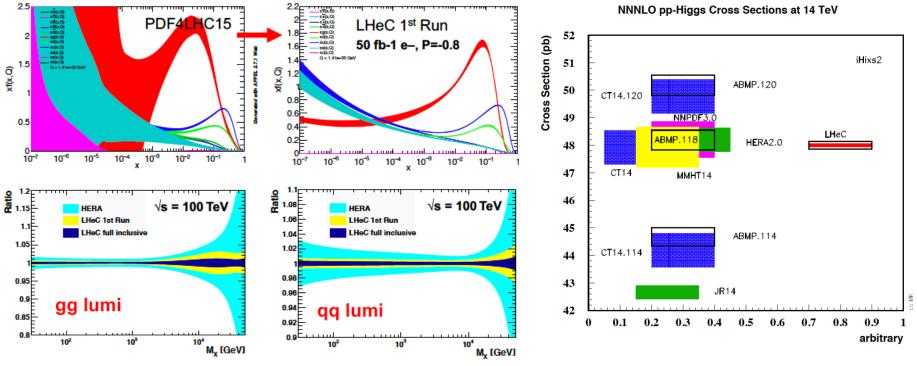

arXiv:1710.0593{

F2 and FL predictions for simulated kinematics of LHeC and FCC-eh

3) Beyond the collinear parton model: opening a new QCD lab


- Diffractive PDFs
- Generalized PDfs, unintegrated PDFs \rightarrow 3D proton structure

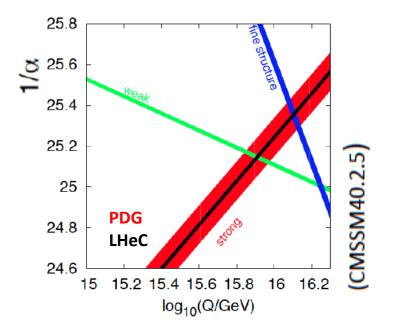
- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x effects
- High $Q^2 \rightarrow$ Lever-arm for gluon, flavour decompositi
- Large $M_x \rightarrow$ Jets, heavy flavours, W/Z ...
- Large $E_T \rightarrow$ Precision QCD with jets ...


Diffractive PDFs

Study by W Slominski & arXiv:1901.09076

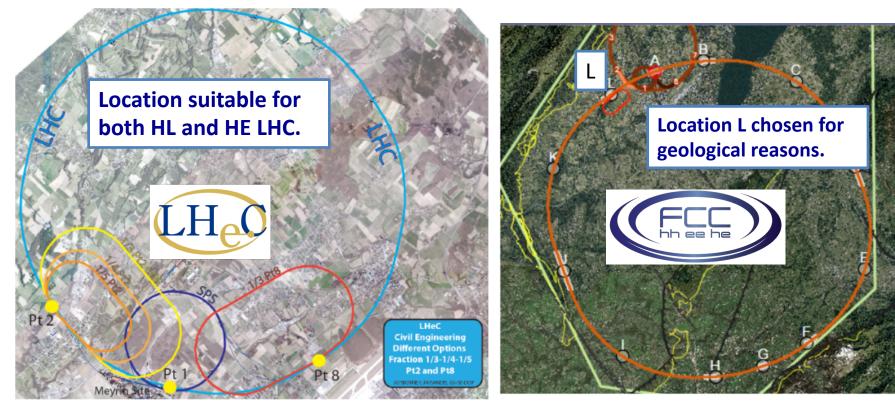
4) High precision QCD and synergies

- N3LO PDFs and precision α_s for σ_{Higgs} in pp (and for AA)
- Precision PDFs & α_s for pp discoveries, e.g. W', Z', SUSY, EFT interpretations
- Test of factorization in pp and AA
- Crucial external input for HL-LHC, HE-LHC, FCC-hh, e.g. precision Z predictions for pp luminometer, precision M_W and $\sin^2\theta$ pp+ep measurement



Plot from C Gwenlan, DIS2019

Plot from M Klein, DIS2019


5) Surprises and QCD discoveries

- Leptoquarks may be discovered in pp \rightarrow needs ep for spectroscopy
- α_s may be LOW and not in agreement with lattice calculations \rightarrow GUT?
- ... SM has 61 elementary particles... Quarks may have a sub-structure → test via contact interactions to 100 TeV at FCC-eh
- Free broken charge particles? Free colour? The gluon may NOT saturate [decisive test only with F_2 and F_L possible]

ep: Opportunities and Challenges

ERL-electron beam external to pp rings.

- C(ERL) = 1/n C(LHC): 60 GeV: 1/3 (9km) \rightarrow BSM, top, Higgs, Low x all want maximum E_e

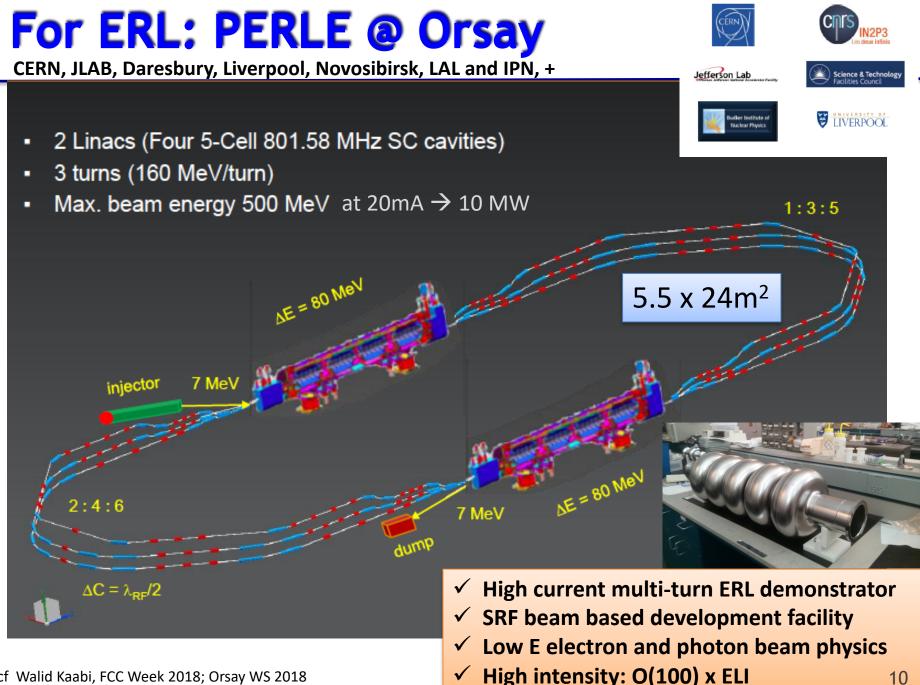
C(ERL) = 1/11 C(FCC) → New physics may require $E_e > 60$ GeV

Nominal 60 GeV ERL: O(1) BCHF ; 1000 cavities; 3504 dipoles; 1440 quads

Energy – Cost – Physics – Footprint scenarios being worked out further

- Two 802 MHz Electron LINACs + 2x3 return arcs: using energy recovery in same structure: sustainable technology with power consumption < 100 MW⁻ instead of 1 GW for a conventional LINAC.
- Beam dump: no radioactive waste! tune-up dump comp. RF **10-GeV linac** high electron polarisation of 80-90% injector \rightarrow see talk by O. Bruening, 4.3.19 0.12 km 0.17 km comp. RF 1.0 km 2.0 km 10, 30, 50 GeV **Concurrent eh and FCC-hh** total circumference ~ 8.9 km operation! ERL-e dun Same Twin Collider idea holds for **HE-LHC and HL-LHC 10-GeV linac** 26 km 0.03 km e- final focus √s=3.5 TeV ep peak lumi 10³⁴ cm s⁻² s⁻¹ (based on existing HL-LHC design) **E**_e = 60 GeV
 - Operation scenario: F. Bodry et al. CERN-ACC-2018-0037 [arXiv:1810.13022]
 - L= 2000 fb⁻¹ total collected in 20 years

ERL design detailed in LHeC CDR: arXiv:1206.2913 and updates at LHeC/FCC-eh WS@CERN, 9/17 and Orsay, 6/18.


20, 40, 60 GeV

LHC p

 $E_p = 50 \text{ TeV}$

Site: L

FCC-p

cf Walid Kaabi, FCC Week 2018; Orsay WS 2018

- 1) "DGLAP" proton (sub) structure
 - Significant extension of HERA2.0 + jets : 1-year of LHeC means 10 times luminosity of 15years-HERA
 - N³LO DIS theory framework
 - New world of heavy quark PDFs; s, c, b, t \rightarrow clarification of HFL schemes
 - High precision strong coupling measurement to per mille
- 2) Parton dynamics
 - Low x resummation, BFKL, gluon saturation unveiled via precision structure function measurements of F_2 and F_L
 - Test of momentum sum rule via precision high and low x data
- 3) Beyond the collinear parton model: opening a new QCD lab
 - Diffractive PDFs
 - Generalized PDfs, unintegrated PDFs \rightarrow 3D proton structure
- 4) High precision QCD and synergies
 - N3LO PDFs and precision α_s for σ_{Higgs} in pp
 - Precision PDFs & α_s for pp discoveries, e.g. W', Z', SUSY, EFT interpretations
 - Test of factorization in pp
 - Crucial external input for HL-LHC, HE-LHC, FCC-hh, e.g. precision Z predictions for pp luminometer, precision M_w and sin² θ pp+ep measurement
- 5) Surprises and QCD discoveries
 - Leptoquarks may be discovered in pp \rightarrow needs ep for spectroscopy
 - α_s may be LOW and not in agreement with lattice calculations \rightarrow GUT?
 - Quarks may have a sub-structure \rightarrow test via contact interactions to 100 TeV at FCC-eh
 - Free broken charge particles? Free colour? ... SM has 61 elementary particles...
 - The gluon may NOT saturate [decisive test only with F₂ and F_L possible]