

CERN Council Open Symposium on the Update of European Strategy for Particle Physics Granada, Spain, May 15th 2019

Strong interaction physics at future eA colliders

Néstor Armesto IGFAE, Universidade de Santiago de Compostela nestor.armesto@usc.es

Unión Europea Fondo Europeo de Desarrollo Regional Una manera de hacer Europa"

Contents:

I. Introduction:

- → Nuclear structure functions.
- \rightarrow Small-x physics.
- \rightarrow Implications on pA/AA.
- → Machines and kinematics.
- 2. Partonic structure of the nucleus:
- \rightarrow Collinear nPDFs.
- \rightarrow Diffractive nPDFs.

Not yet final!

- 3. New dynamics at small x:
- → Inclusive observables.
- → Diffractive observables.
- → Correlations.

4. Nuclear effects in the final state:

- \rightarrow Jets.
- → Fragmentation functions.

Strong interaction physics at future eA colliders.

- 5. Community.
- 6. Summary/recommendations.

<u>Note</u>: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Nuclear structure functions:

Strong interaction physics at future eA colliders: I. Introduction.

Small-x physics:

 Q^2 (GeV²)

- HERA found $xg \alpha x^{-0.3}$.
- Present data can be described by: → Linear evolution approaches, either DGLAP or resummation at low x. → Non-linear approaches: saturation.
- Theory: at very high energies (i.e. small ¹/₂ x), non-linear dynamics must be present. Where is it? At HERA:

 \rightarrow Hints of failure of DGLAP at small x, Q², resummation?

→ No azimuthal structures (ridge) found for $Q^2 > 5$ GeV².

• Non-linear dynamics density-driven: $\downarrow x/\uparrow A \Rightarrow ep \& eA, large range in$ $I/x \& Q^2$, essential.

Strong interaction physics at future eA colliders: I. Introduction.

 $\ln 1/x$

Implications on pA/AA:

• Nucleus \neq Zp+(A-Z)n. • Particle production at large scales similar to pp (dilute regime).

• Medium behaves very early like a low viscosity liquid: macroscopic description.

<u>Gluons from saturated nuclei</u> \rightarrow Glasma?

- Lack of information about smallx partons, correlations and transverse structure.
- We do not understand the

[B. Cole]

dense regime.

→ eA: nuclear WF and mechanism of particle production.

Strong interaction physics at future eA colliders: I. Introduction.

- becomes?
- which dynamics?

• Medium is very opaque to coloured particles traversing it.

OGP

Reconfinement

• How isotropised the system

• Why is hydro effective so fast,

→ eA: initial conditions; how small can a system become and still show 'collectivity'?

 Dynamical mechanisms for such opacity? Weak or strong coupling? How to extract accurately medium parameters?

→ eA: in-medium QCD radiation, cold nuclear effects on hard probes.

Machines:

Strong interaction physics at future eA colliders: 1. Introduction.

addressing different physics.

Kinematics:

DIS data.

• EIC/LHeC versus hh: → pA/AA covers largest range in kinematics. → DIS offers: > A clean experimental environment - low multiplicity, no pileup, fully constrained kinematics x, Q^2 reconstructing the outgoing lepton; ► A more controlled theoretical setup - many 1st-principles

calculations, factorisation tests.

Strong interaction physics at future eA colliders: I. Introduction.

• EIC/LHeC-FCC-eh:

extension of 2/4-5 orders of magnitude in x and Q^2 wrt existing

Contents:

- I. Introduction:
- → Nuclear structure functions.
- \rightarrow Small-x physics.
- \rightarrow Implications on pA/AA.
- → Machines and kinematics.

2. Partonic structure of the nucleus:

- \rightarrow Collinear nPDFs.
- \rightarrow Diffractive nPDFs.

Not yet final!

- 3. New dynamics at small x:
- → Inclusive observables.
- → Diffractive observables.
- → Correlations.

4. Nuclear effects in the final state:

- \rightarrow Jets.
- → Fragmentation functions.

Strong interaction physics at future eA colliders.

- 5. Community.
- 6. Summary/recommendations.

<u>Note</u>: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

- Large uncertainties for x<0.01 and for large x glue (parametrisation biases, weakly constrained flavour decomposition and impact parameter dependence); small impact of present LHC data.
- Few data for any single A e.g. Pb (15 DIS+30 pPb+vA): A-dependence of initial conditions.
- Sizeable impact on precision in hard probes of the QGP.
- HL-LHC data to provide additional constrains, see 1812.06772: heavy quarks (including top) and quarkonium (inclusive, and exclusive in UPCs) under study.

 eA will provide precise nPDFs to be contrasted with pA/AA: checks of factorisation in the nuclear environment required for hard probes of the QGP.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 9

unconstrained

N.Armesto, 15.05.2019

unconstrained

0.01

nPDFs: fits to a single nucleus

• LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS16-like global fits and HERAPDF DIS-only fits: large reduction of uncertainties in a completely new kinematical region.

- Fit to a single nucleus possible: no A-dependence.
- Charm, beauty, c-tagged CC for strange (not yet in)
- \Rightarrow complete unfolding of

different parton species.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 10

GPDs and TMDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. II

GPDs and TMDs:

• Coherent exclusive production of γ and VM yields information about q and g GPDs.

GPDs and TMDs:

Nuclear diffractive PDFs:

- hadron remaining intact.: ~10 % events at HERA are diffractive!
- Never measured in nuclei, with incoherent diffraction dominant above relatively small -t: gap), relation between diffraction in ep and nuclear shadowing \Rightarrow MPIs, CEP.

• Extractable in nucleus with the same accuracy as in proton.

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

• Diffractive PDFs give the conditional probability of measuring a parton in the hadron with the

interplay between multiple scattering and survival probability of the colourless exchange (rapidity

Contents:

- I. Introduction:
- → Nuclear structure functions.
- \rightarrow Small-x physics.
- \rightarrow Implications on pA/AA.
- → Machines and kinematics.
- 2. Partonic structure of the nucleus:
- \rightarrow Collinear nPDFs.
- \rightarrow Diffractive nPDFs.

Not yet final!

- 3. New dynamics at small x:
- → Inclusive observables.
- → Diffractive observables.
- → Correlations.

4. Nuclear effects in the final state:

- \rightarrow Jets.
- → Fragmentation functions.

Strong interaction physics at future eA colliders.

- 5. Community.
- 6. Summary/recommendations.

<u>Note</u>: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Search for new parton dynamics at small x:

• Saturation modifies evolution: tension between the description in linear evolution of different inclusive observables (with different sensitivities to the gluon and the sea, e.g. F_2 and F_L or σ_r^{HQ}), if enough lever arm in Q² is available at small enough x.

1702.00839

eAu@EIC

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

Diffractive observables:

• Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: smaller energy dependence, shrinking of the diffractive peak.

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

 Saturation results in a larger diffractive over inclusive cross section: interplay between non-linear phenomena and survival probability.

N.Armesto, 15.05.2019

15

Correlations:

- Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.
- To be studied at EIC & LHeC far from kinematical limits.
- Nuclear and saturation effects on usual **BFKL** signals (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?

• HL-LHC and higher energy hh/AA colliders: many of these signals can be considered (nuclear modification factors at small-x, exclusive vector meson production in UPCs, particle and jet decorrelation), but larger uncertainties will remain: collectivity, factorisation,... DIS would be decisive to set the existence of a new regime of QCD.

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

Contents:

- I. Introduction:
- → Nuclear structure functions.
- \rightarrow Small-x physics.
- \rightarrow Implications on pA/AA.
- → Machines and kinematics.
- 2. Partonic structure of the nucleus:
- \rightarrow Collinear nPDFs.
- \rightarrow Diffractive nPDFs.

Not yet final!

- 3. New dynamics at small x:
- → Inclusive observables.
- → Diffractive observables.
- → Correlations.

4. Nuclear effects in the final state:

- \rightarrow Jets.
- → Fragmentation functions.

Strong interaction physics at future eA colliders.

- 5. Community.
- 6. Summary/recommendations.

<u>Note</u>: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

• Jets not suppressed in pPb @ LHC: compatibility with softer observables? \rightarrow small systems. • Jets will be abundantly produced in eA colliders up to sizeable E_T , they can be used to **test** factorisation and for precision studies of changes of QCD radiation in the nuclear environment \Rightarrow hard probes of the QGP.

Strong interaction physics at future eA colliders: 4. Nuclear effects in the final state. 18

lets:

(nPDF determination in pA) and for QGP analysis in AA.

altered in the nuclear medium.

\rightarrow Low energy: hadronization inside \rightarrow

Strong interaction physics at future eA colliders: 4. Nuclear effects in the final state. 19

Community:

Strong interaction physics at future eA colliders.

Summary / recommendations:

• eA colliders offer huge possibilities for QCD physics in new kinematic and dynamics domains: Determination of nuclear partonic structure with high precision: collinear nuclear PDFs, nuclear GPDs/ TMDs (3D-structure), diffractive nuclear PDFs, to be contrasted with pA and AA. -> Searches of signals of a new regime of QCD - saturation - in inclusive and diffractive observables, and through correlations; both ep & eA are required to discover it and understand the underlying dynamics. → Modifications of particle production, hadronisation and QCD radiation in the nuclear environment. Support further studies of the eA physics case at the largest possible energy and the implications on pp/ *p*A/AA.

• The EIC and the LHeC are complementary (except for spin in which EIC is unique): → PDFs for future AA colliders and the study of saturation demand the highest possible energy. → 3D-structure and hadronisation/QCD radiation will be studied in complementary domains. Support the exploitation of the synergies and complementarities between the EIC and the LHeC/FCC-eh.

- All these aspects are very relevant for the heavy-ion program:
 - → Benchmarking of hard probes.
 - \rightarrow Initial conditions for collective behaviour.
 - → Understanding of the onset of collectivity: small systems, MPIs, ...

Encourage the development of a QCD program in the 2030's consisting of pp/pA/AA and ep/eA.

Strong interaction physics at future eA colliders.

Strong interaction physics at future eA colliders.

Purpose:

- trigger our understanding of the rich variety of structures at the subatomic scale.
- Related contributions submitted to the ESPPU:

ID	Title
159	LHeC/PERLE
99	US-based EIC
103	DIS
152	QCD/HI at HL-LHC
135	QCD/HI at FCC-hh and FCC-eh
163	QCD theory
148	NuPECC
21	INFN hadron
114	MC generators
33	Germany HEP

Strong interaction physics at future eA colliders.

• To cover: Prospects and Challenges for Electron-Ion Collider, also from the perspectives of the US-EIC, to

• Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus).

• For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2 \sigma_{NC}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{Q^4 x} \cdot \sigma_{r,NC} \qquad \qquad \frac{d^2 \sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1 \pm P}{2} \cdot \sigma_{r,NC}$$

$$\sigma_{r,NC} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{x} \mathbf{F_3} - \frac{y^2}{Y_+} \mathbf{F_L}, \qquad \qquad \mathbf{F_2^{\pm}} = -F_2 + \kappa \sigma_{r,CC}$$

$$\sigma_{r,CC}^{\pm} = W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \qquad \qquad \mathbf{x} \mathbf{F_3^{\pm}} = -\kappa_Z (\pm \sigma_{r,CC})$$

Strong interaction physics at future eA colliders: I. Introduction.

DIS:

v		
v (q)		

Standard DIS variables:

electron-proton cms energy squared:

$$s = (k+p)^2$$

photon-proton cms energy squared:

 $W^2 = (q+p)^2$

inelasticity

 $y = \frac{p \cdot q}{p \cdot k}$ Diaulaan y

$$x = \frac{-q^2}{2p \cdot q}$$

(minus) photon virtuality $Q^2 = -q^2$

 $\cdot \frac{G_F^2}{2\pi x} \cdot \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 Y_+ \cdot \sigma_{r,CC}$ $Y_{\pm} = 1 \pm (1 - y)^2$

 $\kappa_Z(-v_e \mp Pa_e) \cdot F_2^{\gamma Z} + \kappa_Z^2(v_e^2 + a_e^2 \pm 2Pv_e a_e) \cdot F_2^Z$ $(a_e + Pv_e) \cdot xF_3^{\gamma Z} + \kappa_Z^2(\mp 2v_e a_e - P(v_e^2 + a_e^2)) \cdot xF_3^Z)$

	SET	EPS09 JHEP 0904 (2009) 065	DSSZ PRD85 (2012) 074028	nCTEQ15 PRD93 (2016) 085037	KAI5 PRD93 (2016) 014036	EPPS16 EPJC C77 (2017)163	nNNPDI 1904.000
data	eDIS	~	~	~	~	~	~
	DY	~	~	~	~	~	×
	π0	~	~	~	×	~	×
	vDIS	×		×	×		×
	pPb	×	×	×	×	~	×
#	# data	929	1579	740	1479	1811	451
	order	NLO	NLO	NLO	NNLO	NLO	NNLC
pro	ton PDF	CTEQ6.I	MSTW2008	~CTEQ6.I	JR09	CTI4NLO	NNPDF3
mas	s scheme	ZM-VFNS	GM-VFNS	GM-VFNS	ZM-VFNS	GM-VFNS	FONLL
COI	mments	Δχ ² =50, ratios, <u>huge</u> <u>shadowing-</u> <u>antishadowing</u>	$\Delta \chi^2$ =30, ratios, medium-modified FFs for π^0	$\Delta \chi^2$ =35, PDFs, valence <u>flavour sep.</u> , <u>not enough</u> <u>sensitivity</u>	PDFs, <u>deuteron data</u> <u>included</u>	$\Delta \chi^2$ =52, flavour sep., ratios, <u>LHC pPb data</u>	<u>NNPD</u> <u>methodol</u> isoscalarity as

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 25

• Lack of data \Rightarrow large uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract medium parameters.

• nCTEQ15 vs. EPPS16: note the parametrisation bias.

• nCTEQ15 vs. EPPS16: note the parametrisation bias.

• Presently available LHC data seem not to have a large effect: large-x glue (baseline=no v, no LHC data).

nPDFs: fits

• LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS16-like global fits: large impact.

• HF separation has sizeable impact (on glue).

• Not yet included: beauty, c-tagged CC for strange.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 27

nPDFs: HL-LHC

• Presently, only dijet and W/Z data from pPb at the LHC are used in global fits. • Use of heavy quarks (including top) and quarkonium under study.

 Also exclusive vector meson production in UPCs - additional assumptions are required. the nuclear environment.

3D-structure of hadrons and nuclei:

- New kinds of factorisation (or lack of it), new evolution equations.
- Directly related with spin.
- in fixed target programs (talks by Lansberg and Schnell) and UPCs (at Q=0).

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 29

Most of these quantities can be ideally explored in EIC and LHeC; they also can be explored

Quark and gluon GPDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 30

Quark and gluon GPDs:

• Coherent exclusive production of γ and VM yields information about q and g GPDs.

Quark and gluon GPDs:

• Coherent exclusive production of γ and VM yields information about q and g GPDs. • Incoherent exclusive production yields information about fluctuations: hot spots.

 The origin of proton spin has been an open issue for several decades: schematically speaking, quarks account for ~ 30 %, gluons for ~ 20 % (known in a limited x-range), the rest?

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 31

Spin:

Inclusive Measurement: $\frac{1}{2} \left[\frac{\mathrm{d}^2 \sigma^{\vec{\leftarrow}}}{\mathrm{d}x \, \mathrm{d}Q^2} - \frac{\mathrm{d}^2 \sigma^{\vec{\rightarrow}}}{\mathrm{d}x \, \mathrm{d}Q^2} \right] \simeq \frac{4\pi \, \alpha^2}{Q^4} y \left(2 - y\right) g_1(x, Q^2)$ e+p \rightarrow e'+X

Leading Order: $g_1(x,Q^2) = \frac{1}{2} \sum e_q^2 \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right]$ $\Delta\Sigma(Q^2) = \int_0^1 dx \ g_1(x, Q^2) \quad \text{(Quark Spin)}$

Higher Order: $\frac{dg_1}{d \log Q^2} \propto \Delta g(x, Q^2)$ (Gluon Spin)

Gluon Spin ¹/₂-Gluon-Quark Spin $\int_{0}^{1} dx \Delta g(x,Q^2)$ — DSSV 2014 DSSV 2014 with 90% C.L. band Δg](x,Q²) eRHIC data: 15 × 100 GeV eRHIC data: + 15 × 250 GeV 15 × 100 GeV + 20 × 250 GeV + 15 × 250 GeV 0.4 all bands 90% C.I + 20 × 250 GeV all bands 90% C.L. $\Delta \Sigma$ fdx [1/2 / 0.4 0.2 1/2 $Q^2 = 10 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ $\begin{array}{c} -0.2 \\ 10^{-6} & 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} & 1 \\ 10^{-6} & 10^{-5} & 10^{-4} & 10^{-3} & 10^{-2} & 10^{-1} \\ \end{array} \\ \begin{array}{c} \mathbf{x}_{\min} \\ \mathbf{x}_{\min} \end{array} \quad \begin{array}{c} \mathbf{at oW x.} \end{array}$

• Inclusive measurements with both e and p polarised (EIC): huge improvement

1509.06489,1206.6014,1212.1701

• Several TMDs to be determined by different observables: beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC,...

• Besides, polarised light nuclei, diffraction,...

• TMD factorisation can be tested in non-polarised collisions: dijets, charm,... Relation at small x with CGC.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 32

TMDs and spin:

1509.06489, 1206.6014, 1212.1701

