Néstor Armesto *IGFAE, Universidade de Santiago de Compostela* nestor.armesto@usc.es

Unión Europea Fondo Europeo de Desarrollo Regional

Una manera de hacer Europa"

CERN Council Open Symposium on the Update of European Strategy for Particle Physics Granada, Spain, May 15th 2019

Strong interaction physics at future eA colliders

Contents:

1. Introduction:

- **→ Nuclear structure functions.**
- \rightarrow Small-x physics.
- **→ Implications on pA/AA.**
- **→ Machines and kinematics.**
- 2. Partonic structure of the nucleus:
- **→ Collinear nPDFs.**
- **→ Diffractive nPDFs.**

- 3. New dynamics at small x:
- **→ Inclusive observables.**
- **→ Diffractive observables.**
- **→ Correlations.**

- \rightarrow Jets.
- ➜ Fragmentation functions.

4. Nuclear effects in the final state:

Strong interaction physics at future eA colliders. 2 *N. Armesto, 15.05.2019*

Not yet final!

- 5. Community.
- 6. Summary/recommendations.

Note: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Nuclear structure functions:

Small-x physics:

- HERA found xg α x^{-0.3}.
- Present data can be described by: **→ Linear evolution approaches, either** DGLAP or resummation at low x. ➜ Non-linear approaches: saturation.
- **Theory: at very high energies (i.e. small** $\frac{2}{5}$ x), non-linear dynamics must be present. **Where is it?** At HERA:

→ Hints of failure of DGLAP at small x, Q², resummation?

➜ No azimuthal structures (ridge) found for Q2>5 GeV2 .

● Non-linear dynamics density-driven: ↓x/↑A 㱺 **ep & eA, large range in 1/x & Q2, essential.**

Implications on pA/AA:

 \bullet Nucleus \neq Zp+(A-Z)n. ● Particle production at large scales similar to pp (dilute regime).

[B. Cole]

- Lack of information about smallx partons, correlations and transverse structure.
- We do not understand the

dense regime.

➜ **eA: nuclear WF and mechanism of particle production.**

● Medium behaves very early like a low viscosity liquid: macroscopic description.

Gluons from saturated nuclei \rightarrow Glasma?

● How isotropised the system

● Why is hydro effective so fast,

- becomes?
- which dynamics?

➜ **eA: initial conditions; how small can a system become and still show 'collectivity'?**

● Medium is very opaque to coloured particles traversing it.

OGP

Reconfinement

● Dynamical mechanisms for such opacity? Weak or strong coupling? ● How to extract accurately medium parameters?

➜ **eA: in-medium QCD radiation, cold nuclear effects on hard probes.**

Machines:

Strong interaction physics at future eA colliders: 1. Introduction. 6 *N. Armesto, 15.05.2019*

addressing different physics.

Kinematics:

7 *N. Armesto, 15.05.2019*

▶ A clean experimental environment - low multiplicity, no pileup, fully constrained kinematics x,Q2 reconstructing the outgoing lepton; setup - many 1st-principles calculations, factorisation tests.

● **EIC/LHeC-FCC-eh**: extension of 2/4-5 orders of magnitude in \times and Q^2 wrt existing DIS data.

● **EIC/LHeC versus hh**:

➜ pA/AA covers largest range in

kinematics. ➜ **DIS offers**:

▶ A more controlled theoretical

Contents:

- 1. Introduction:
- **→ Nuclear structure functions.**
- \rightarrow Small-x physics.
- **→ Implications on pA/AA.**
- **→ Machines and kinematics.**

- 3. New dynamics at small x:
- **→ Inclusive observables.**
- **→ Diffractive observables.**
- **→ Correlations.**

2. Partonic structure of the nucleus:

- **→ Collinear nPDFs.**
- **→ Diffractive nPDFs.**

- \rightarrow Jets.
- ➜ Fragmentation functions.

4. Nuclear effects in the final state:

Strong interaction physics at future eA colliders. 8 *N. Armesto, 15.05.2019*

Not yet final!

- 5. Community.
- 6. Summary/recommendations.

Note: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 9 *N. Armesto, 15.05.2019*

- Large uncertainties for x<0.01 and for large x glue (parametrisation biases, weakly constrained flavour decomposition and impact parameter dependence); small impact of present LHC data.
- Few data for any single A e.g. Pb (15 DIS+30 pPb+vA): A-dependence of initial conditions.
- Sizeable impact on precision in hard probes of the QGP.
- HL-LHC data to provide additional constrains, see 1812.06772: heavy quarks (including top) and quarkonium (inclusive, and exclusive in UPCs) under study.

● **eA will provide precise nPDFs to be contrasted with pA/AA**: checks of factorisation in the nuclear environment required for hard probes of the QGP.

unconstrained unconstrained

 0.01

nPDFs: fits to a single nucleus

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 10 *N. Armesto, 15.05.2019*

● LHeC/FCC-eh ePb and EIC eAu pseudodata included in EPPS16-like global fits and HERAPDF DIS-only fits: **large reduction of uncertainties in a completely new kinematical region.**

- Fit to a single nucleus possible: no A-dependence.
- Charm, beauty, c-tagged CC for strange (not yet in)
- \Rightarrow complete unfolding of

different parton species. 10^{-7} 10^{-8} 10^{-5} 10^{-4} 10^{-3}

GPDs and TMDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 11 *N. Armesto, 15.05.2019*

GPDs and TMDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 11 *N. Armesto, 15.05.2019*

• Coherent exclusive production of γ and VM yields information about q and g GPDs.

GPDs and TMDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 11 *N. Armesto, 15.05.2019*

Nuclear diffractive PDFs:

- hadron remaining intact.: ~10 % events at HERA are diffractive!
- ! Never measured in nuclei, with incoherent diffraction dominant above relatively small -t: gap), relation between diffraction in ep and nuclear shadowing \Rightarrow **MPIs, CEP**.

Strong interaction physics at future eA colliders: 3. New dynamics at small x. 12 *N. Armesto, 15.05.2019*

• Diffractive PDFs give the conditional probability of measuring a parton in the hadron with the

interplay between multiple scattering and survival probability of the colourless exchange (rapidity

● **Extractable in nucleus with the same accuracy as in proton**.

Contents:

- 1. Introduction:
- **→ Nuclear structure functions.**
- \rightarrow Small-x physics.
- **→ Implications on pA/AA.**
- **→ Machines and kinematics.**
- 2. Partonic structure of the nucleus:
- **→ Collinear nPDFs.**
- **→ Diffractive nPDFs.**

- 3. New dynamics at small x:
- **→ Inclusive observables.**
- **→ Diffractive observables.**
- **→ Correlations.**

- \rightarrow Jets.
- ➜ Fragmentation functions.

4. Nuclear effects in the final state:

Strong interaction physics at future eA colliders. 13 *N. Armesto, 15.05.2019*

Not yet final!

- 5. Community.
- 6. Summary/recommendations.

Note: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Search for new parton dynamics at small x:

14 *N. Armesto, 15.05.2019*

● Saturation modifies evolution: tension between the description in linear evolution of different inclusive observables (with different sensitivities to the gluon and the sea, e.g. F₂ and F_L or σ_rHQ), **if enough lever arm in Q2 is available at small enough x**.

1702.00839

eAu@EIC

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

Diffractive observables:

• Saturation (the approach to the black disk limit) affects both the energy and the t (impact parameter)-dependence of coherent exclusive VM production: smaller energy dependence, shrinking of the diffractive peak.

● Saturation results in a larger diffractive over inclusive cross section: interplay between non-linear phenomena and survival probability.

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

Correlations:

- Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.
- **To be studied at EIC & LHeC far from kinematical limits**.
- ●**Nuclear and saturation effects on usual BFKL signals** (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?

● HL-LHC and higher energy hh/AA colliders: many of these signals can be considered (nuclear modification factors at small-x, exclusive vector meson production in UPCs, particle and jet decorrelation), but larger uncertainties will remain: collectivity, factorisation,… **DIS would be decisive to set the existence of a new regime of QCD**.

Strong interaction physics at future eA colliders: 3. New dynamics at small x.

Contents:

- 1. Introduction:
- **→ Nuclear structure functions.**
- \rightarrow Small-x physics.
- **→ Implications on pA/AA.**
- **→ Machines and kinematics.**
- 2. Partonic structure of the nucleus:
- **→ Collinear nPDFs.**
- **→ Diffractive nPDFs.**

- 3. New dynamics at small x:
- **→ Inclusive observables.**
- **→ Diffractive observables.**
- **→ Correlations.**

- \rightarrow Jets.
- ➜ Fragmentation functions.

4. Nuclear effects in the final state:

Strong interaction physics at future eA colliders. 17 *N. Armesto, 15.05.2019*

Not yet final!

- 5. Community.
- 6. Summary/recommendations.

Note: this is a personal selection of topics; for additional discussions and supplemental material (e.g. on spin and relations with other fields), see Thomas Gehrmann, Urs Wiedemann, Uta Klein and Gavin Salam's talks, and the backup.

Jets:

Strong interaction physics at future eA colliders: 4. Nuclear effects in the final state. 18 *N. Armesto, 15.05.2019*

• Jets not suppressed in pPb @ LHC: compatibility with softer observables? \rightarrow small systems. ● Jets will be abundantly produced in eA colliders up to sizeable ET, they can be used to **test factorisation and for precision studies of changes of QCD radiation in the** nuclear environment ⇒ hard probes of the QGP.

➜ Low energy: hadronization inside →

(nPDF determination in pA) **and for QGP analysis in AA.**

altered in the nuclear medium.

Community:

Strong interaction physics at future eA colliders. 20 *N. Armesto, 15.05.2019*

Summary / recommendations:

• eA colliders offer huge possibilities for QCD physics in new kinematic and dynamics domains: → Determination of nuclear partonic structure with high precision: collinear nuclear PDFs, nuclear GPDs/ TMDs (3D-structure), diffractive nuclear PDFs, to be contrasted with pA and AA. → Searches of signals of a new regime of QCD - saturation - in inclusive and diffractive observables, and through correlations; both ep & eA are required to discover it and understand the underlying dynamics. → Modifications of particle production, hadronisation and QCD radiation in the nuclear environment. *Support further studies of the eA physics case at the largest possible energy and the implications on pp/ pA/AA.*

• The EIC and the LHeC are complementary (except for spin in which EIC is unique): → PDFs for future AA colliders and the study of saturation demand the highest possible energy. → 3D-structure and hadronisation/QCD radiation will be studied in complementary domains. *Support the exploitation of the synergies and complementarities between the EIC and the LHeC/FCC-eh.*

- All these aspects are very relevant for the heavy-ion program:
	- **→ Benchmarking of hard probes.**
	- **→ Initial conditions for collective behaviour.**
	- \rightarrow Understanding of the onset of collectivity: small systems, MPIs, ...

Encourage the development of a QCD program in the 2030's consisting of pp/pA/AA and ep/eA.

Strong interaction physics at future eA colliders.

Strong interaction physics at future eA colliders. 22 *N. Armesto, 15.05.2019*

Purpose:

● To cover: Prospects and Challenges for Electron-Ion Collider, also from the perspectives of the US-EIC, to

- trigger our understanding of the rich variety of structures at the subatomic scale.
- Related contributions submitted to the ESPPU:

Strong interaction physics at future eA colliders.

 \bullet Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus).

 \bullet For charged lepton scattering and neglecting Z exchange,

DIS:

$$
\frac{d^2 \sigma_{NC}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{Q^4 x} \cdot \sigma_{r,NC} \qquad \frac{d^2 \sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1 \pm P}{2} \cdot \sigma_{r,NC}
$$
\n
$$
\sigma_{r,NC} = \mathbf{F_2} + \frac{Y_-}{Y_+} \mathbf{x} \mathbf{F_3} - \frac{y^2}{Y_+} \mathbf{F_L}, \qquad \mathbf{F_2^{\pm}} = F_2 + P_1
$$
\n
$$
\sigma_{r,CC}^{\pm} = W_2^{\pm} \mp \frac{Y_-}{Y_+} x W_3^{\pm} - \frac{y^2}{Y_+} W_L^{\pm} \qquad \mathbf{x} \mathbf{F_3^{\pm}} = \kappa_Z (\pm \sigma_{r,CC}^{\pm})
$$

Standard DIS variables:

electron-proton cms energy squared:

 $s = (k+p)^2$

photon-proton cms energy squared:

 $W^2 = (q+p)^2$

inelasticity

 $y = \frac{p \cdot q}{p \cdot k}$

Bjorken x

$$
x = \frac{-q^2}{2p \cdot q}
$$

(minus) photon virtuality $Q^2 = -q^2$

 $\left[\frac{G_F^2}{2\pi x}\cdot \left[\frac{M_W^2}{M_W^2+Q^2}\right]^2Y_+\cdot \sigma_{r,CC}\right]$ $Y_{\pm} = 1 \pm (1 - y)^2$

 $\kappa_Z(-v_e \mp Pa_e) \cdot F_2^{\gamma Z} + \kappa_Z^2(v_e^2 + a_e^2 \pm 2Pv_e a_e) \cdot F_2^Z$ $(a_e + Pv_e) \cdot x F_3^{\gamma Z} + \kappa_Z^2 (\mp 2v_e a_e - P(v_e^2 + a_e^2)) \cdot x F_3^Z$

Strong interaction physics at future eA colliders: 1. Introduction. 24 *N. Armesto, 15.05.2019*

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 25 *N. Armesto, 15.05.2019*

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 25 *N. Armesto, 15.05.2019*

 \bullet Lack of data \Rightarrow large uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract medium parameters.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 26 *N. Armesto, 15.05.2019*

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 26 *N. Armesto, 15.05.2019*

● nCTEQ15 vs. EPPS16: note the parametrisation bias.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 26 *N. Armesto, 15.05.2019*

● nCTEQ15 vs. EPPS16: note the parametrisation bias.

● Presently available LHC data seem not to have a large effect: large-x glue (baseline=no ν, no LHC data).

nPDFs: fits

• HF separation has sizeable impact (on glue).

ePb and EIC eAu pseudodata included in EPPS16-like global fits: large impact.

● Not yet included: beauty, c-tagged CC for strange.

nPDFs: HL-LHC

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 28 *N. Armesto, 15.05.2019*

● Presently, only dijet and W/Z data from pPb at the LHC are used in global fits. ● Use of heavy quarks (including top) and quarkonium under study.

● Also exclusive vector meson production in UPCs - additional assumptions are required. the nuclear environment.

3D-structure of hadrons and nuclei:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 29 *N. Armesto, 15.05.2019*

- New kinds of factorisation (or lack of it), new evolution equations.
- Directly related with spin.
- in fixed target programs (talks by Lansberg and Schnell) and UPCs (at Q=0).

● Most of these quantities can be ideally explored in EIC and LHeC; they also can be explored

Quark and gluon GPDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 30 *N. Armesto, 15.05.2019*

Quark and gluon GPDs:

• Coherent exclusive production of γ and VM yields information about q and g GPDs.

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 30 *N. Armesto, 15.05.2019*

Quark and gluon GPDs:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 30 *N. Armesto, 15.05.2019*

• Coherent exclusive production of γ and VM yields information about q and g GPDs. ● Incoherent exclusive production yields information about fluctuations: hot spots.

• The origin of proton spin has been an open issue for several decades: schematically speaking, quarks account for ~30 %, gluons for \sim 20 % (known in a limited x-range), the rest?

Spin:

Inclusive Measurement: $\frac{1}{2} \left[\frac{d^2 \sigma^{\rightleftarrows}}{dx dQ^2} - \frac{d^2 \sigma^{\rightleftarrows}}{dx dQ^2} \right] \simeq \frac{4\pi \alpha^2}{Q^4} y (2 - y) g_1(x, Q^2)$
e+p \rightarrow e'+X

Leading Order: $g_1(x,Q^2) = \frac{1}{2}\sum e_q^2 [\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2)]$ $\Delta \Sigma(Q^2) = \int_0^1 dx~g_1(x,Q^2)$ (Quark Spin)

Higher Order: $\frac{dg_1}{d \log Q^2} \propto \Delta g(x, Q^2)$ (Gluon Spin)

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 31 *N. Armesto, 15.05.2019*

• Inclusive measurements with both e and p polarised (**EIC**): huge improvement

TMDs and spin:

Strong interaction physics at future eA colliders: 2. Partonic structure of the nucleus. 32 *N. Armesto, 15.05.2019*

1509.06489,1206.6014, 1212.1701

! Several TMDs to be determined by different observables: beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC,…

• Besides, polarised light nuclei, diffraction,...

● TMD factorisation can be tested in non-polarised collisions: dijets, charm,… Relation at small x with CGC.

