

PIXE analysis of antique pottery from the Mediterranean sea area

Stephan Rösemeier and Hans Hofsäss

2nd Institute of Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Johannes Bergemann, Rebecca C. Klug, Chiara B. Fantauzzi

Archeological Institute, Georg-August-University Göttingen, Nikolausberger Weg 15 37073 Göttingen, Germany

- Collecting antique pottery in Sicily (Italy)
- Analysis at the Göttingen Tandem accelerator
- Experimental setup and calibration
- Results
- Outlook

6: external proton beam PIXE, RBS, C-ERDA

4: NRA

5 : μ-beam

7: Implantation

11: RBS

13: NRA

14: HR-RBS

15: Implantation

NeC 9HDS2 tandem ccelerator

Ion sources for negative ions

Accelerator tank filled with 3 bar SF₆

Proton micro beam line

Source of negative ions by Cesium sputtering (SNICS)

Maintenance Feb 2018

Motivation for experiments with external proton beam (protons extracted into air)

Light element analysis in samples which cannot be handled in vacuum

- Because it is easier to handle sample under ambient pressure
- Water containing samples
- Porous samples with air inclusions
- Liquid samples
- Cells plant tissue, animal cells

Analysis of H, Li, B, C, N, O

- difficult to detect with conventional RBS
- not detectable with PIXE
- High energy ERDA or NRA not applicable to ambient conditions

Approach: combined RBS and coincidence ERDA using a MeV proton beam

Range of 2.5MeV protons in air

Range of 2.5MeV protons in balloon gas

Range of 2.5MeV protons in Helium gas

Use balloon gas as ambient condition:

- √ large ion range of 30 cm
- √ little angular straggling
- ✓ acceptable energy straggling σ = 5.4 keV
- √ low cost of ballon gas
- 50 keV energy loss in 10 mm balloon gas

High non-Rutherford scattering cross section for light elements

Non Rutherford cross section for ¹⁶O(p,p)¹⁶O

RBS spectrum of SiO₂ with E=2.86 MEV

Restrict the energy of incident protons to 2.6 MeV

Conditions for external proton beam IBA

ballon gas; E_p ≤ 2.6 MeV; traversed gas volume: 10 mm

Hydrogen Coincidence ERDA with external proton beam

Elastic Recoil Detection Analysis

H. Hofsäss, J. Tirira, Y. Serruys and P. Trocellier, in **Forward Recoil Spectrometry**: Applications to Hydrogen Determination in Solids, Chapter 9, J. Tirira, Y. Serruys and P. Trocellier (eds.), (Plenum Press, New York, 1996, ISBN 0-306-45249-9) p.209-246

$$\tan \theta = \frac{\sin 2\phi}{\frac{M_1}{M_2} - \cos(2\phi)}$$

Special case $M_1 = M_2$: kinematic factors K, Λ and $\Delta E(x)$

$$K = \cos^2 \theta$$

$$\Lambda = \cos^2 \phi$$

$$K + \Lambda = 1$$

$$\tan \theta = \cot \phi$$

$$\cos^2 \theta + \cos^2 \phi = 1$$

$$\theta + \phi = \pi / 2$$

$$\Delta E(d) = S_{E_0} \cdot d + S_{E_0} \cdot x \left(\frac{1}{\cos^3 \theta} + \frac{1}{\cos^3 \varphi} - 1 \right)$$

$$f = \left(\frac{1}{\cos^3 \theta} + \frac{1}{\cos^3 \varphi} - 1 \right)$$
for $\theta = 45 \pm 2.5^{\circ}$

$$f \approx 4.7 \pm 0.04$$

scattering angle 0 (deg)

30

Detection at $\theta = \phi = 45^{\circ}\pm 2.5^{\circ}$ allows depth resolved analysis of Hydrogen profiles

External proton beam setup for

 light element analysis in moist samples and thin films

Analysis of polyimide films (Kapton)

Backscattering (BS) detector

Example: Hydrogen analysis of moist samples

- 25 μm poly(vinyl alcohol) (PVA) thin flim samples
- Stored in vacuum for 48 h
- Exposed to wet N₂- gas for t= 0 80 min
- Ext. Beam RBS → higher O content for t=80 min
- Ext. Beam C-ERDA

Example 3: Hydrogen analysis of moist samples

C-ERDA Hydrogen profile of moist PVA

water absorption is dominated by the diffusion of H₂O molecules.

External beam setup for PIXEParticle induced X-ray emission)

Basics of X-ray spectrometry for element analysis

Excitation:

- Electrons
 - EDX energy dispersive X
- X-rays
 - XRF X-ray fluorescence
 - ED XRF (energy dispersive)
 - WD XRF (wave length dispersive)
 - TXRF (total reflection)
- Gamma radiation
 - Similar to XRF
- Protons
 - PIXE
- Alpha particles
 - PIXE: the Mars version

Alternatives: Neutron activation analysis

Inductively coupled plasma mass spectrometry (ICP-MS)

Particle Induced X Ray Emission and Mars Exploration Rovers

Alpha Source: Curium ²⁴⁴Cm produces alphas and X-rays from ²⁴⁰Pu decaqy

fast, energy resolution 150 eV

slow, very high energy resolution of few eV

Si drift detectors

Braggs law: $n\lambda = 2d \sin \theta$

XRF:

- The commercial technique
- Hand held plug-and-play systems (X-ray flash light)
- Background from backscattered X-rays
- Background from Compton Photons
- Bremsstrahlung from Compton electrons
- Divergent X-ray beam

3d X-ray optics for low background analyses

Total reflection XRF for low background high sensitivity analyses

So why protons to excite atoms?

S. Johansson et al., BULLETIN OF THE AMERICAN PHYSICAL SOCIETY 23 (1978) 1035 University Lund, Sweden

Johansson, S. A. E. and Campbell. J. L. 'PIXE: A Novel Technique for Elemental Analysis', Wiley, Chichester, 1988.

• Well defined ion range ←→ all X-rays are generated in the same sample volume

40 keV X-rays: 200 – 2000 μm half thickness 2500 MeV protons: 30 μm in typical metal alloys 100 μm in polymers, paint etc

- Excitation/ionization better for light elements
 - Photo effect $\sigma \sim \frac{Z^5}{E^{.5}}$
- Almost now Bremsstrahlung background $I_{brems} \sim \frac{1}{m^2}$ analysis
 - Compared to electrons background is reduced by factor 3·10⁶
- No backscattered photons
- Combination with Backscattering spectrometry and gamma exitation spectrometry (PIGE)

- Quantitative
 - ion energy loss
 - ionization cross section
- Invisible elements like
 Oxygen included in the
 analysis

Analysis with GUPIXWIN from University Guelph, Canada

PIXE spectrum of a Platinum foil

But also transitions from N,O,P Orbitals to L- and M -shell

Up to 12 K-shell X-ray lines
Up to 25 L – and M X-ray lines per Element

Lab course example: analysis of a british desert plate

Analysis with Protons: 2,5 MeV; 5 nA beam current

Diamond membrane
0,17 mikcometer thick
1 mm diameter

Graphite nozzle

Protonenstrahl

Analysed volume: 1mm² x 30 μm

Until 1860: Ultramarine blue made from Lapislazuli Na₆[Al₆Si₆O₂₄]S_xCa

Since 1986: Zaffres Blue made of Cobalt oxide

PIXE analysis:Spode Tower plate blue part Data file:Teller.txt Date: 09.01.2019 Proton energy: 2.58 MeV Detector: SDD KETEK AXAS-M 20 V1093 10⁵ relative weight concentrations X-ray lines conc. (wt. ppm) Xray line error (wt. ppm) Si escape lines SiK S_K CIK ArK K_K CaK ScK 10⁴ TiK V_K 25 MnK FeK CoK NiK Kβ Fe Kα Fe Kα CuK ZnK MoK BaLA Counts 10° PbLA Pb L_{γ_1} 10² 10¹ energy (keV)

Archeological Survey in Sicily

Ceramic samples were collected at the ground, no excavation

- Pottery samples are documented using GPS and Photography and registered in topograhical maps including the context
- Samples remain in archives in Italy
- Tiny fragments of few mm³, which usually are being thrown away, were brought to Göttingen with local permission.

External beam setup for PIXE

- Samples were mounted on adhesive carbon tape or plasticine
- Each sample was aligned with surface perpendicular to the beam using:
 - Two-Laser-pointer beam spot alignment
 - Lab vise with multidirectional vise head

Total: 550 samples analyzed

Analysis: Beam energy 2660 keV; beam current \approx 3-5 nA; acquisition time: 120 s Window: 200 nm Si_3N_4 1x1 mm² membrane or 170 nm 1mm diameter diamond membrane Energy at the sample surface 2580 \pm 7 keV

KETEK SDD 450 μm, 8μm Be window, 5mm diameter, 43 mm air absorber

Calibration samples:

- Au foil Au-M lines at 2 keV, Au L lines at 9-14 keV
 - Verifies the detector efficiency between 2 keV and 14 keV
- Eurocent coin made of "Nordic gold"
 - Reproduce the nominal content of 88% Cu, 1% Sn, 5% Zn, 6% Al
 - Verifies the detector efficiency in the energy regime 1.5 keV 10 keV

PIXE spectrum of a Au foil

PIXE spectrum of a 10 Eurocent coin

Results

Balance between SiO₂ –CaO and Al₂O₃

Terra Sigillata (Roman ceramic table ware)

Pre-historical pottery

(Note: concentrations are normalized to 100 %)

- Typical: SiO₂ 75 wt.% , CaO: 13 wt.% , Al₂O₃ 14 wt.% (relative)
- Some samples with very high content of CaO of 25-50 wt.%
- Few samples with very little CaO (Terra Sigillata, African cooking ware)

Greek laquer ware (Greek fine ceramics)

Amphores

Rocchicella

Cooking ware

Fe concentration of 550 samples

No significant features regarding the Fe content

Correlation SiO₂ and CaO

- Clear anti-correlation between SiO₂ and CaO content
- Indication of a bimodal distribution

Cr and Ni concentrations

Bimodal distribution of Cr and Ni in Camarina samples

Cr and Ni concentrations

Low concentration of Cr and Ni in most samples Cr < 400 ppm Ni < 200 ppm

Cr and Ni concentrations

- Cr and Ni content are usually correlated
- Only samples from Camarina show high Cr (> 600 ppm) and high
 Ni (> 600 ppm) content
- Most other samples have low Cr (< 400 ppm) and Löw Ni (< 200 ppm) content
- Greek black gloss: many samples with medium Cr and Ni

No correlations between

- Ni-Cu
- Ni-Mn
- Cu-Mn
- Ni-V
- Mn-Zn

Cr-Ni content may be an indication of the origin of the clay

Sr concentration

- Typically below 0.2 wt.%
- In about 5 % of the samples up to 2 wt.%

- Sr concentration in rocks< 600 ppm
- Sr concentration in soil< 1000 pmm
- Sr containing minerals like
 - Coelestine
 - Strontianite

could contribute to higher Sr concentrations

Sr concentration could be an indication of the provenance

Comparison of Sr an Ca concentration

Bi-modal distribution of Ca

- Center at 2 %
- Center at 8 %

histogram of Ca concentrations 12 -10 16 % 1 ± 0.5 wt. % 7 ± 3.7 wt.% 84 % Count 10 Ca concentration (wt.%)

High Ca and high Sr content are not correlated

see page 12, CaO

Summary for other elements

Sulfur content > 0.2 wt.% : 65 samples (12%) max. concentration 7 wt.%

Lead content: typical 200 - 400 ppm max. concentration < 2000 ppm

Manganese: typical < 500 ppm; some < 3500 ppm 0.4 %: 2 samples

1 % : 1 sample

Zinc: < 600 ppm 0. 1 %: 1 sample

0.6 % : 1 sample

Titanium: 0.6-1.2 wt.% few samples up to 2 wt.%

Bromine: typical 100 ppm, < 300 ppm **2000 ppm: 1 sample**

Chlorine:

Bromine:

1 sample out of 550 has an unusual high Br content of 0.2 wt.%

- Ocean 65 ppm Br
- Ocean 2.1 wt.% Cl
- Br:Cl ≈ 1:660

Possible origin of high Br concentration:

- Tyrian purple, a reddish purple natural dye
- The main chemical is 6,6'-dibromoindigo.
- Production from sea snails
- Pottery was possibly exposed to Tyrian purple dye?

purple-dyed textiles became status symbols, whose use was restricted by sumptuary laws

1 sample out of 550 has an unusual high Cr content of 1.7 wt.%

Possible origin?

 Cr in soil and groundwater has been linked to geogenic processes, namely, weathering of ultramafic rocks (Mg-Fe minerals, serpentine), M. Chrysochoou, Curr. Poll. Rep. 2 (2016) 224

Summary

- Tiny fragments, which usually are being thrown away, get a high value as samples, as they can be used with local permission
- PIXE analyses of 1mm² spot size with 2.5 MeV external proton beam, 550 samples were analyzed
- Calibration of setup using Au/Pt/Ta-foils and "Nordic gold"
- SiO2 Al2O3 CaO composition indicates different types of clay, Si and Ca content are anti-correlated
- Cr and Ni are correlated and show bimodal or trimodal distributions
- Often unusual high Sr concentrations
- One sample with very high Br content identified
- One sample with very high Cr content identified

Compare with: G. Barone et al., Archaeometry 56 (2014) 70 XRF

G. Barone, et al. Per. Mineral 73 (2003) 43 XRF, ICP-MS

G. Montana et al., Archaeometry 49 (2007) 455 XRF

