

Institut für Theoretische Physik

Bounding the Higgs-boson width at the HL-LHC through interference effects

Seminar of the II. Physikalisches Institut

10 May 2019

Enrico Bothmann

Lance Dixon, Stefan Höche, Silvan Kuttimalai

- Motivation for this study
- Theory predictions for |background + signal|²
- Strategies for extracting Γ_H bounds
 - ► low-vs-high *p*_{*T,H*}
 - distorted $m_{\chi\chi}$ line shape fit
- **Results**: what to expect at the HL-LHC

Motivation for this study

Motivation

- the Higgs boson H might couple to unknown fields
 - (e.g. scalar A_0 , with $H \rightarrow A_0 A_0 \rightarrow gggg$ with $2m_{A0} < m_H$)
 - (side note: dominant invisible decay ruled out from *E_{T,miss}* measurements) [ATLAS-CONF-2013-011]
 - \rightarrow measure $\Gamma_H > \Gamma_H^{\text{SM}} \Rightarrow$ new physics
- alas, can not measure width directly
 - $\Gamma_H^{\rm SM} \approx 4 \, {\rm MeV}$

- experimental resolution: $\sigma_{res} \approx 1-2$ GeV @ LHC
- via on-shell signal cross section $\sigma \sim g^2/\Gamma_H$? \rightarrow can only extract bound if assume $g = g^{\text{SM}}$

can we break this coupling-width degeneracy?

Motivation: breaking the degeneracy I

[Englert Spannowsky 1405.0285]

- one way: complement with off-shell measurements [Caola Melnikov 1307.4935]
 - + on-shell $\sigma \sim g^2/\Gamma_H$ vs. off-shell $\sigma \sim g^2$
 - require signal strength $\mu_{XX} \approx 1$ (data!) \Rightarrow bound on Γ_H
 - ZZ channel due to relatively large off-shell σ

- but need to assume coupling scale-independence: $g(m_{\rm H}) \approx g(\sqrt{s})$ [Englert Spannowsky 1405.0285]
 - can construct BSM models that violate this
 e.g. SU(3) scalar ("squark") modifies ggH coupling

interpretation of measurement becomes model-dependent

Motivation: breaking the degeneracy II

- eat the cake and have it?
 i.e. stay on-shell & break degeneracy
- take interference terms into account

Motivation: breaking the degeneracy II

- use rate change induced by σ_I term
 [Campbell et al. 1704.08259]
 - *Γ_H* ≤ 8-22 *Γ_H*SM in diphoton channel
 @ HL-LHC

- or use asymmetric σ_R term
 [Cam
 (rate increase below nominal mass,
 decrease above) ⇒ observable peak shift & deformation
 - use diphoton channel
 - clean experimental signature
 - larger shift effect than e.g. ZZ
 - estimates using fixed-order calculations for shift-based bounds exist, $\Gamma_H \lesssim 15 \Gamma_H^{SM}$ @ HL-LHC

[Dixon, Li 1305.3854 (2013)]

[Campbell et al. 1704.08259]

Motivation: questions and goals

- fixed-order \checkmark , but is this robust?
 - resummation corrections expected to be important [Cieri et al 1706.07331, Bozzi et al hep-ph/0302104]
 - realistic analysis and crystal-ball smearing for m_{yy} seem to reduce the shift effect [ATL-PHYS-PUB-2016-009]
 - calculate particle-level prediction for Higgs width bound at HL-LHC, compare showers
 - use realistic cuts and smearing
 - bonus: find better way to extract bounds

Theory predictions

Exercise 1.1.1.1.1a: Given locality, causality, Lorentz invariance, and known physical data since 1860, show that the Lagrangian describing all observed physical processes (sans gravity) can be written:

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\nu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}q_i^{\sigma})g_{\mu}^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_{\mu}\bar{G}^a G^b g_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} +$ $\frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{g^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{c} {}^{g} W_{\nu}^{+} \tilde{W}_{\mu}^{-}) - Z_{\nu}^{0} (W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\mu}^{-} \partial_{\nu} W_{\mu}^{+}) + Z_{\mu}^{0} (W_{\nu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} \partial_{\nu} W_{\mu}^{+})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-}) - A_{\nu} (W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - W_{\nu}^{-} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\nu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\nu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\mu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\mu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\mu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\mu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu} A_{\mu} (W_{\mu}^{+} W_{\mu}^{-} - W_{\mu}^{+} W_{\mu}^{-})] - ig s_{w} [\partial_{\nu}$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} W^{+}_{\nu}W^{-}_{\mu}$ - $2A_{\mu}Z^{0}_{\mu}W^{+}_{\nu}W^{-}_{\nu}$ - $g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}]$ - $\frac{1}{8}g^2\alpha_h[H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W^{-}_{\mu} \big(\phi^{0} \partial_{\mu} \phi^{+} - \phi^{+} \partial_{\mu} \phi^{0} \big) \big]^{w} + \tfrac{1}{2} g [W^{+}_{\mu} \big(H \partial_{\mu} \phi^{-} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) - W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{-} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} \phi^{+} - \phi^{-} \partial_{\mu} H \big) + W^{-}_{\mu} \big(H \partial_{\mu} H \big)$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{\mu}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{\mu}}{c_{\mu}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_w MA_\mu (W^+_\mu \phi^- - W^-_\mu \phi^+) - ig \frac{1-2c_w^2}{2c_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \frac{1}{4}g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-]$ $\frac{1}{4}g^2 \frac{1}{c^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + \phi^-)^2 \phi^+ \phi^-]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} +$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-}$ $g^1 s_w^2 A_\mu A_\mu \phi^+ \phi^- - \bar{e}^\lambda (\gamma \partial + m_e^\lambda) e^\lambda - \bar{\nu}^\lambda \gamma \partial \nu^\lambda - \bar{u}_i^\lambda (\gamma \partial + m_e^\lambda) u_i^\lambda \bar{d}_i^{\lambda}(\gamma \partial + m_d^{\lambda})d_i^{\lambda} + igs_w A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\bar{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] +$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda) + (\bar{e}^\lambda\gamma^\mu(4s_w^2-1-\gamma^5)e^\lambda) + (\bar{u}_i^\lambda\gamma^\mu(\frac{4}{2}s_w^2-1-\gamma^5)e^\lambda)]$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W^+_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + \psi^{\lambda}]$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $\gamma^{5}(u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} \frac{m_{e}^{\lambda}}{M} \left[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})\right] \frac{g}{2}\frac{m_{\epsilon}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa})]$ $\gamma^5 u_j^{\kappa} = -\frac{g}{2} \frac{m_u^{\lambda}}{M} H(\bar{u}_j^{\lambda} u_j^{\lambda}) - \frac{g}{2} \frac{m_d^{\lambda}}{M} H(\bar{d}_j^{\lambda} d_j^{\lambda}) + \frac{ig}{2} \frac{m_u^{\lambda}}{M} \phi^0(\bar{u}_j^{\lambda} \gamma^5 u_j^{\lambda}) \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - M^2)X^ \frac{M^2}{c^2}X^0 + \overline{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \overline{X}^0 X^- - \partial_\mu \overline{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \overline{Y} X^- - \partial_\mu \overline{X}^+ X^0)$ $\partial_{\mu}\overline{X}^{+}Y$ + $igc_{w}W_{\mu}^{-}(\partial_{\mu}\overline{X}^{-}X^{0} - \partial_{\mu}\overline{X}^{0}X^{+})$ + $igs_{w}W_{\mu}^{-}(\partial_{\mu}\overline{X}^{-}Y - \partial_{\mu}\overline{X}^{0}X^{+})$ $\partial_{\mu}\bar{Y}X^{+}$) + $igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ + $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-})$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] +$ $igMs_w[\bar{X}^0X^-\phi^+ - \bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0 - \bar{X}^-X^-\phi^0]$

9

Monte-Carlo event generation: ingredients

$$\frac{d\sigma}{dX} = \sum_{ab,n} \int dx_a dx_b d\Phi_n(\{p_i\}) f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2) | \mathcal{M}_{ab \to n}(x_a x_b s, \{p_i\}, \mu_R^2, \mu_F^2) |^2 O_n(\{p_i\})$$

- perturbative
 - perturbative MEs for small n (hard process)
 - semi-classical approx for large n: parton shower / resummation (Bremsstrahlung)
- non-perturbative
 - incoming proton structure (PDFs)
 - parton-hadron transition (hadronisation, decays)
 - remnant interactions, intrinsic $k_{\rm T}$ (underlying event)
- measurement function $O_n = \delta(X \chi_n(p))$

Monte-Carlo event generation: single event

each "MC point" gives a fully differential simulated event for *n* final-state particles, to which any O_n can be applied

Interference contributions

[Dixon 1305.3854]

Signal & Interference simulation

- SHERPA provides an implementation of NLO interference terms from [Dixon, Li 1305.3854 (2013)]
- METS scale setter, core: $\mu_F = \mu_R = m_{\chi\chi}$
- within our framework, we can thus use MC@NLO to combine NLO terms with PS
 - MC@NLO combines NLO ME and PS, while retaining
 [Frixione, Webber JHEP06(2002)029]
 [Höche et al JHEP09(2012)049]
 - NLO accuracy in expansion of α_S
 - full logarithmic accuracy of PS resummation
- matching uncertainties formally higher-order, but can be enhanced by large K factors (for which $gg \rightarrow H$ is infamous!)

lơ/dp⊥ [pb/GeV]

Background simulation

- use generic internal ME generators + OPENLOOPS for the virtual
- METS scale setter, core: $\mu_F = \mu_R = m_{yy}$
- MEPS@(N)LO combines matched (N)LO ME for several multiplicies into a single event sample, here:
 - 2 → 2 @ NLO; 2 → 3,4,5 @ LO
 - i.e. first few (hard) emissions by ME (improvement over shower radiation pattern)
 - double-counting removed by slicing the phase space into PS (soft/ collinear) and ME (hard) regions

Background simulation

[ATLAS 1704.03839]

→ simulated data seems to give realistic background description

Strategies for extracting bounds on the width

Mass shift through interference

[Martin 1208.1533 (2012)]

observation: interference of $gg \rightarrow H \rightarrow \gamma\gamma$ with QCD $gg \rightarrow$ e.g. quark loop $\rightarrow \gamma\gamma$ \Rightarrow smeared Higgs mass peak in $m_{\gamma\gamma}$ shifts:

 $\Delta M_H = -150 \,\mathrm{MeV} \quad (\mathrm{LO\,SM})$

~
$$30 \times \Gamma_{\rm H}^{\rm SM}$$
 (4 MeV)
~ $0.1 \times \sigma_{\rm res}$ (1.7 GeV)
~ $2.5 \times m_{H}^{\gamma\gamma}$ uncert. (0.4 GeV at 36 fb⁻¹ 13 TeV
[ATLAS 1806.00242]

Dixon, Li 1305.3854 (2013)]

 $\Delta M_H = -70 \,\mathrm{MeV} \quad (\mathrm{NLO}\,\mathrm{SM})$

(reduced due to large signal K factor)

observation: fixing signal event yield gives $\Gamma_{\rm H}$ bound independent from further assumptions on couplings and/or decay modes

Mass shift grows with experimental resolution

ightarrow larger exp. uncert. gives larger shift, but at some point fitting the washed out peak comes with large uncertainties itself

Extract width from mass shift

- BSM: scaling factors c_g , c_y for Hgg, Hyy couplings
- let c_g , c_{χ} , Γ_H vary, but keep measured signal yield fixed: $\mu_{\chi\chi} \approx 1$

BSM parametrisation = SM x signal yield

$$\frac{(c_g c_\gamma)^2 \sigma_S}{m_H \Gamma_H} + c_g c_\gamma \sigma_I = \left(\frac{\sigma_S}{m_H \Gamma_H^{\rm SM}} + \sigma_I\right) \mu_{\gamma\gamma}$$

• σ_I very small, can be neglected for $\Gamma_H \leq 100 \ \Gamma_H^{SM}$

$$\Rightarrow c_g c_\gamma = \sqrt{\mu_{\gamma\gamma} \frac{\Gamma_H}{\Gamma_H^{\rm SM}}} \quad \text{and with} \quad \Delta M_H \sim c_g c_\gamma \quad \rightarrow \quad \Delta M_H \sim \sqrt{\mu_{\gamma\gamma} \frac{\Gamma_H}{\Gamma_H^{\rm SM}}}$$

 \Rightarrow bound on $\Gamma_{\rm H}$ independent from further assumptions on couplings and/or decay modes

A reference value for m_H

we need a comparison value to extract $\Delta M_H = m_H^{\text{shifted}} - m_H^{\text{reference}}$

- yy+j has smaller relative magnitude of interference
- ... and opposite sign of interference for *qg*- and *gg*-initiated channels ⇒ cancellation
- $\rightarrow p_{T,H}$ cut dependent mass shift

- extract shift within $gg \rightarrow H \rightarrow \gamma \gamma(j)$ channel by comparing large p_T bin and low p_T bin
- ▶ projection to HL-LHC (3 ab^{-1}): 95 % CL limit for $\Gamma_{\rm H} \leq 15 \Gamma_{\rm H}^{\rm SM}$
- requires precise knowledge of the $p_{\mathrm{T},H}$ spectrum
 - but fixed-order unreliable for low p_{T}

ightarrow how stable when including resummation (& hadronisation?) effects

p_{T} extraction for fixed-order & resummed

An alternative approach ...

- can we just go back to the $m_{\chi\chi}$ distribution and fit something that includes the shape distortion?
 - no need to define reference mass
 - conceptually simpler
 "just an invariant mass distribution fit"
 - distribution described at NLO, smaller theoretical errors
- convolution of Lorentzian (signal profile) with Gaussian (exp. resolution) described by Faddeeva function:

$$w(z) = e^{-z^2} \operatorname{erfc}(-iz)$$

Go back to the $m_{\gamma\gamma}$ distribution?

calculate line profile that enters the fit:

$$\mathcal{F} = \alpha \left[\operatorname{Re}\{\mathcal{S}\} + \beta \sqrt{\frac{\Gamma_H}{\Gamma_H^{\mathrm{SM}}}} \operatorname{Im}\{\mathcal{S}\} \right]$$

in terms of the shape function

$$S = \frac{w(z_{-}) - w(z_{+})}{2\sqrt{2\pi}\sigma} \quad \text{with} \quad z_{\mp} = \frac{m_{\gamma\gamma} \mp M_H}{\sqrt{2}\sigma}, \quad M_H = \sqrt{m_H^2 - i m_H \Gamma_H}$$

using $c_{g\gamma} = \sqrt{\frac{\Gamma_H}{\Gamma_H^{\text{SM}}}}$

- α is a fit parameter, β is determined by relative cross section normalisations (this is where our theory predictions enter)
- fit F to the input data (here: our pseudo data)

GOF comparison for Faddeeva vs. Gaussian

 \rightarrow Residuals reduced by factor > 4 by using Faddeeva function

Results

Input parameters & Analysis

- CT10NLO and corresponding strong coupling
- EW parameters calculated from $\alpha_{QED}(0) = 1/137$ and W, Z, H masses using tree-level relations
- RIVET analysis modelled after ATLAS-CONF-2017-046
 - at least two **y** with $E_{\text{T},\text{y}} > 25$ GeV and $|\eta_{\text{y}}| \leq 2.37$
 - $p_{\mathrm{T},\mathrm{y}_{1}}/m_{\mathrm{y}\mathrm{y}}$ > 0.35 and $p_{\mathrm{T},\mathrm{y}_{2}}/m_{\mathrm{y}\mathrm{y}}$ > 0.25
 - photon isolation (mimick calorimeter isolation criterion)
 - take scalar sum of $p_{\rm T}$ of all QCD particles in a cone of radius R=0.2 around any photon
 - reject photon if the ratio of this sum and the $p_{\rm T,y}$ exceeds 6,5 %
 - experimental resolution $\sigma_{res} = 1.87 \text{ GeV}$
 - ► m_{¥¥} bin size: 0.1 GeV

$p_{\mathrm{T,min}}$ for the p_{T} -based analysis

preliminary SHERPA MC@NLO (parton-level)

remember ...

- 100 ≤ p_{T,min} ≤ 150 plagued by sizable theory uncertainties
- need NLO for yy+j interference terms to get get better precision;
- can include some higher-order terms to reduce this effect ...

bad news: fixed-order bound $\Gamma_H \le 15$ Γ_H^{SM} degrades after resummation to $\Gamma_H \le 32 + x \Gamma_H^{SM}$

Results for both methods

preliminary SHERPA MC@NLO (parton-level)

→ HL-LHC bound using $p_{T,\min}$ cut method: $\Gamma_H \leq 36 \Gamma_H^{SM}$ → HL-LHC bound using direct-fit method: $\Gamma_H \leq 12 \Gamma_H^{SM}$

Line shape method: dependence of BG fit

within 1σ uncertainty band

Conclusions

- study interference-induced Higgs peak shift at particle-level
- extract the shift / fit distorted line shape \Rightarrow model-independent bound on Γ_H
- HL-LHC bounds (preliminary)
 - e.g. by comparing shift in high-/low $p_{\mathrm{T},H}$
 - fixed-order bound $\Gamma_H \leq 15 \Gamma_H ^{SM}$ degrades after resummation to $\Gamma_H \lesssim 36 \Gamma_H ^{SM}$
 - or by directly fitting distorted line shape in $m_{
 m YY}$
 - somewhat optimistic to get $\Gamma_H \leq 12-24 \Gamma_H^{SM}$
 - based on our simple study it appears that distorted peak fit more powerful
- TODO:
 - use Crystal-Ball function for m_{yy} smearing instead of Gaussian
 - might lower the shift effect [ATL-PHYS-PUB-2016-009]
 - does not exactly give Faddeeva function!
 - re-add event categories (?)
 - ${\mbox{\ \ b}}$ do shower comparisons for CL_S plots

opportunity for PhD students Marie Skłodowska-Curie Early Stage Researcher 3-6 months project in any MCnet ITN node: Durham Glasgow Göttingen Karlsruhe Louvain Lund Manchester University College London montecarlonet.org

Back-up

The real interference before/after smearing

maximum and minimum near $M_{\gamma\gamma} = M_H \pm \Gamma_H/2$

The real interference after smearing

The signal w/wo real interference

finally add genuine parton-shower emissions below μ_{merge}

NLO "fudge" factor for real-emission events

ratio of the Sudakov form factor between the timelike and the spacelike region

include universal higher-order corrections in all components of the NLO calculation and subtracted the overlap

Difference of mass shift above vs. below p_{T,cut}

Background fit

Fit procedure

- generate fit results for each pseudo data set using LL fit (followed by a preparatory fit with the Least Squares method)
 ⇒ MC sample of results to be expected from an eventual fit to data
- 2. sample that distribution and calculate CL_S distribution \Rightarrow Brazilian plot
- Gauß fit (for $p_{\rm T}$ -based method):
 - main result of fit: ΔM_H distribution
 - fitted quantities: m_{H} , Γ_{H} , total normalisation, background hypothesis params
 - parameters held fixed: $\sigma_{
 m res}$
- Faddeeva fit
 - main result of fit: Γ_H distribution
 - fitted quantities: same as in Gauß fit (but different functional form)
 - parameters held fixed: σ_{res} , relative normalisation β