

Boosted hidden physics with ISR

Cristina Mantilla Suarez (Johns Hopkins) LPC Physics Forum

> Z'+ISR jet : EXO-17-001/18-012 Z'+ISR photon : EXO-17-027 φ(bb)+ISR jet : EXO-17-024

The DAZSLE team

[Rutgers] Eva Halkiadakis Marc Osherson Abhijith Gandrakota Amit Lath

[FNAL]

Javier Puarte Lindsey Gray Nick Smith Nhan Tran

[RWTH Aachen] Andrzej Novak Alexander Schmidt

[MIT] Phil Harris Jeff Krupa Dylan Rankin Sang Eon Park

[CERN] Clemens Lange

[JHU] Petar Maksimovic Cristina Mantilla Suarez

[Brown U.] Martin Kwok Greg Landsberg David Yu ₂ [U. Minnesota] Michael Krohn

[Sonora] Jose Benitez

Outline

* Introduction

- * Boosted Dijet Analysis
- * Results
- * New directions

Introduction

X: Z',W', excited quarks, Randall-Sundrum graviton...

Dijets and DM mediators

X: Z',W', excited quarks, Randall-Sundrum graviton... X: DM mediator in simplified DM models

Dijet signatures jet q/g q/g p/p р X q/g q/g jet

Low mass dijets

Basics of a dijet search

- Collect data with a trigger requiring high energy in the event
- Cluster and select 2 jets
- Main background: QCD

Low mass dijet search

- Reach:
 - @ UA2: low energies -> easier to trigger at low masses
 - @LHC: potential to access low couplings but QCD background saturates trigger bandwidth

Low mass dijets @ UA2:

Low mass dijet search @ 2019

3. Keep smoothly-falling jet mass spectrum in data

4. Probe spectrum with data-driven QCD estimate

3. Keep smoothly-falling jet mass spectrum in data

4. Probe spectrum with data-driven QCD estimate

Trigger

Trigger: ISR jet

13 TeV

Cristina Mantilla Suarez (JHU) - LPC Physics Forum

Trigger: ISR jet

13 TeV

Cristina Mantilla Suarez (JHU) - LPC Physics Forum

Trigger: ISR photon

3. Keep smoothly-falling jet mass spectrum in data

4. Probe spectrum with data-driven QCD estimate

2-prong jet

Signal

Jet mass

Apply jet **grooming** (soft-drop algorithm):

Jet rho

Jet rho

Values to avoid:

- Lower p values = non-perturbative soft-drop mass.
- Higher p values = finite cone effects where radiation is not contained in jet
- ρ cuts define m_{SD} range in each p_T category
 - AK8 jets: -5.5 < ρ < -2.1

 $\rho = 2*\ln(30/600) = -6$

CA15 jets: -4 < ρ < -1

Construct observable from particles in jet:

Fraction of energy that each particle carries
 Angular separation

e.g

$${}_{1}e_{2}^{\beta} = \frac{1}{p_{\mathrm{T}J}^{2}} \sum_{1 \leq i < j \leq n_{J}} p_{\mathrm{T}i} p_{\mathrm{T}j} \Delta R_{ij}^{\beta}$$

$${}_{2}e_{3}^{\beta} = \frac{1}{p_{\mathrm{T}J}^{3}} \sum_{1 \leq i < j < k \leq n_{J}} p_{\mathrm{T}i} p_{\mathrm{T}j} p_{\mathrm{T}k} \min\{\Delta R_{ij}^{\beta} \Delta R_{ik}^{\beta}, \Delta R_{ij}^{\beta} \Delta R_{jk}^{\beta}, \Delta R_{ik}^{\beta} \Delta R_{jk}^{\beta}\}$$

Choose working point based on fixed background efficiency

3. Keep smoothly-falling jet mass spectrum in data

4. Probe spectrum with data-driven QCD estimate

Mass correlation

Jet substructure variables depend on the jet mass

Mass correlation

And distort the jet mass distribution

Mass de-correlation (1)

35

3 years ago: τ₂₁DDT Look at correlation and subtract it:

Mass de-correlation (2)

2 years ago: N₂^{DDT}

Generalizing this to any cut

Mass de-correlation (2)

2 years ago: $N_2^{DDT} = N_2 - X(QCD \text{ eff}\%)$

We vary the N₂ cut so that the QCD efficiency is fixed (5%)

Let's look at this correlation for all phase space:

How is this built:

N2^{DDT} correlation

 $N_2^{DDT} = N_2 - X(QCD \text{ eff}\%)$

This is called brute-force decorrelation

Cristina Mantilla Suarez (JHU) - LPC Physics Forum

N₂^{DDT} is flat w.r.t. mass and pT

Analysis selection

After DECORRELATED N₂ cut

mZ'= ??

Cristina Mantilla Suarez (JHU) - LPC Physics Forum

3. Keep smoothly-falling jet mass spectrum in data

4. Probe spectrum with data-driven QCD estimate

QCD data-driven estimate

QCP pass: $N_2^{DDT} < 0$ **QCP fail:** $N_2^{DDT} > 0$

QCD data-driven estimate

45

Fit for data/mc differences with polynomial R_{p/f}

Fit to data

Fit parameters and signal strength simultaneous in binned maximum likelihood fit

47

Uncertainty source	Process			
	Z' (AK8)	W/Z (AK8)	Z' (CA15)	W/Z (CA15)
NLO EW corrections ^{\triangle}		15-35%		15–35%
NLO QCD corrections	10%	10%	10%	10%
NLO EW W/Z decorrelation ^{\triangle}		5–15%	—	5-15%
Simulation sample size	1–12%	1–12%	1–12%	1–12%
$N_2^{1,\text{DDT}}$ selection efficiency	10%	10%	7%	7%
Jet mass scale	1%	1%	1%	1%
Jet mass resolution	10%	10%	7%	7%
Jet mass scale (% / ($p_{ m T}$ [GeV]/100)) $^{\triangle}$	0.5–2%	0.5–2%	0.5–2%	0.5–2%
Jet energy resolution	1–7%	1–7%	1–7%	1–7%
Signal $p_{\rm T}$ correction	5%	—	5%	—
Integrated luminosity	2.3%	2.3%	2.3%	2.3%
Trigger efficiency	2%	2%	2%	2%
Pileup	1–2%	1–2%	1–2%	1–2%
Lepton veto efficiency	0.5%	0.5%	0.5%	0.5%

Uncertainty source	Process			
	Z' (AK8)	W/Z (AK8)	Z' (CA15)	W/Z (CA15)
NLO EW corrections ^{\triangle}		15-35%		15–35%
NLO QCD corrections	10%	10%	10%	10%
NLO EW W/Z decorrelation ^{\triangle}		5-15%		5-15%
Simulation sample size	1–12%	1-12%	1-12%	1–12%
$N_2^{1,\text{DDT}}$ selection efficiency	10%	10%	7%	7%
Jet mass scale	1%	1%	1%	1%
Jet mass resolution	10%	10%	7%	7%
Jet mass scale (% / ($p_{ m T}$ [GeV]/100)) $^{ riangle}$	0.5–2%	0.5–2%	0.5–2%	0.5–2%
Jet energy resolution	1-7%	1-7%	1-7%	1-7%
Signal $p_{\rm T}$ correction	5%		5%	
Integrated luminosity	2.3%	2.3%	2.3%	2.3%
Trigger efficiency	2%	2%	2%	2%
Pileup	1–2%	1–2%	1-2%	1–2%
Lepton veto efficiency	0.5%	0.5%	0.5%	0.5%

Knowing W/Z p_T spectrum

49

Uncertainty source	Process			
	Z' (AK8)	W/Z (AK8)	Z' (CA15)	W/Z (CA15)
NLO EW corrections $^{\triangle}$		15–35%		15–35%
NLO QCD corrections	10%	10%	10%	10%
NLO EW W/Z decorrelation ^{\triangle}		5-15%		5–15%
Simulation sample size	1–12%	1–12%	1–12%	1–12%
$N_2^{1,\text{DDT}}$ selection efficiency	10%	10%	7%	7%
Jet mass scale $> 1000_{\text{E}}$	≥V) ≥ 2400	35.9 fb	1(13 TeV)	1%
Jet mass resol	0° 2200 − CM	S + Data • Total MC — Simult. d — Simult. d	ata fit	7%
Jet mass scale 5 800 Data (peak) 700 Data (continuum)		Data (pe MC (pea Data (co Data (co	ak) k)	0.5–2%
Jet energy res 600	ш 1600 1400		-7%	1–7%
Signal $p_{\rm T}$ corn			;%	
Integrated lun 300	800		3%	2.3%
Trigger efficie 200	600 400		1%	2%
Pileup			-2%	1–2%
Lepton veto e ⁴⁰ 60 80 100 120 m _{sD} (Ge	¥0 V)	60 80 100 m	120 n _{sD} (GeV) 5%	0.5%

Knowing N₂ efficiency

Uncertainty source	Process			
	Z' (AK8)	W/Z (AK8)	Z' (CA15)	W/Z (CA15)
NLO EW corrections ^{\triangle}		15-35%		15-35%
NLO QCD corrections	10%	10%	10%	10%
NLO EW W/Z decorrelation ^{\triangle}		5-15%		5-15%
Simulation sample size	1-12%	1-12%	1-12%	1–12%
$N_2^{1,\text{DDT}}$ selection efficiency	10%	10%	7%	7%
Jet mass scale	1%	1%	1%	1%
Jet mass resolution	10%	10%	7%	7%
Jet mass scale (% / ($p_{\rm T}$ [GeV]/100)) $^{\triangle}$	0.5–2%	0.5–2%	0.5–2%	0.5–2%
Jet energy resolution	1-7%	1-7%	1-7%	1-7%
Signal $p_{\rm T}$ correction	5%		5%	
Integrated luminosity	2.3%	2.3%	2.3%	2.3%
Trigger efficiency	2%	2%	2%	2%
Pileup	1–2%	1–2%	1-2%	1–2%
Lepton veto efficiency	0.5%	0.5%	0.5%	0.5%

Knowing jet mass scale (p⊤ dependent)

Ultimately sensitivity is driven by Rp/f parameters

Results and new directions

Z'+jet (2016+17)

Z'+jet (2017)

Z'+jet (2016+17)

Z'+photon (2016)

Z'+photon (2016)

Photon triggers allows to probe lower mass

35.9 fb⁻¹ (13 TeV)

b-tagged resonances

Scalar (Φ) mediator

- gluon-gluon fusion production
- Preferential coupling to 3rd gen fermions

Use same exact topology as boosted di-jet + double-b tag the jet

(bb) +jet (2016)

Probe scalar couplings with b-tagging

(bb) +jet (2016)

Probe scalar couplings with b-tagging

Sensitivity to DM

If leptophobic Z' couples to DM as well quarks, then it acts as mediator between the dark sector and visible sector (SM)

g_{DM} > 0 and m_{DM} < m_{M/2}

Smaller $m_{DM} < m_{M/2}$ and larger g_{DM} :

- Smaller BR(Z'->qq)
- Larger BR(Z'->XX)

Same dijet limit on g_{DM}=0 translates into weaker coupling on g_{DM}>0

Smaller

Sensitivity to DM

CMS Preliminary

New directions

- Future luminosity gains will be small
 - $g_q \,^{95\%}CL \sim L^{1/4}$:(
- How to access **lower couplings**:
 - Improve mass-decorrelated-tagger sensitivity
 - Improve QCD estimate
- Explore other models that can be constrained with same topology
- Maybe access lower pT with scouting?

Tagger improvement

Different options in the ML market:

- e.g. DeepAK8 by CMS
- Need mass decorrelation:
 - Include adversarial network (trade off with performance)
 - Or train with flat mass spectrum..

QCD re-weighting

 Improve Rp/f by making QCD to look as similar as possible to data
 https://arxiv.org/pdf/1804.09720.pdf

- Developed a new approach to look for light boosted resonances
 - ISR triggering + mass decorrelation
- Allows a whole new program of searches and measurements at LHC

 - Moving forward @ RunII-III with ML for jets

Width constraints

https://arxiv.org/pdf/1404.3947.pdf

-

From 1constraint on (mZ', gq) space from hadronic Z width (Z ' modifies Zqq vertex)

$$\frac{\Delta \Gamma_Z^{\text{had}}}{\Gamma_Z^{\text{had}}} = \frac{2g_q c_Z c_W s_W (2V_u + 3V_d)}{3g(1 - m_{Z'}^2/m_Z^2)(2V_u^2 + 3V_d^2 + 5/16)}$$

Coupling conversion

Cross section for narrow s-channel resonance R

$$\hat{\sigma}(\sqrt{\hat{s}}) = \frac{16\pi \mathcal{N}\Gamma_R^2}{(\hat{s} - m_R^2)^2 + m_R^2\Gamma_R^2}$$
$$\sigma(1+2 \to R) \approx 16\pi^2 \mathcal{N} \times \text{BR}(R \to 1+2) \times \left[\frac{1}{s}\frac{dL}{d\tau}\right]_{\tau=m_R^2/s} \times \frac{\Gamma_R}{m_R},$$

For Z'
$$\sigma(R) \propto g_q^2.$$