

NuPhys2019: Prospects in Neutrino Physics

16-18 December 2019 Cavendish Conference Centre, London, UK Europe/London timezone

THE JUNO EXPERIMENT: PHYSICS PROSPECTS, DESIGN AND STATUS

Monica Sisti

INFN and Università, Milano-Bicocca *on behalf of the JUNO collaboration*

Jiangmen Underground Neutrino Observatory

Massive: ~20 kton Liquid Scintillator (LS) **Underground**: ~700 m overburden **High resolution**: 3% / √E (MeV) **Energy scale precision**: < 1%

Main physics goal:

→ ν Mass Ordering determination

Rich physics possibilities:

- Precision measurement of oscillation parameters
- Supernovae neutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Geo-neutrinos
- Nucleon decay

The neutrino mass ordering (νMO) open issue

NobsNexp

In 2002 Petcov and Piai suggested that interference effects between $\Delta m_{\rm sol}^{-2}$ and $\Delta m_{\rm atm}^{-2}$ driven oscillations can be used by reactor experiments to infer the neutrino mass hierarchy

made possible by "large value" of θ_{13}

JUNO is the first experiment to see both Δm² at the same time

$$
\Delta m_{ij}^2 \equiv m_i^2 - m_j^2
$$

\n
$$
\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2
$$

\n
$$
|\Delta m_{32}^2| \approx 2.5 \times 10^{-3} \text{ eV}^2
$$

\nNH: $|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$
\nIH: $|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$
\n**Daya Bay**
\n**XaExample 1**

The neutrino mass ordering (νMO) at reactors

$\bar{\bm{{\mathsf{v}}}}_\text{e}$ survival probability:

$$
P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}
$$

\n
$$
P_{21} = \cos^{4}(\theta_{13})\sin^{2}(2\theta_{12})\sin^{2}(\Delta_{21})
$$

\n
$$
P_{31} = \cos^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{31})
$$

\n
$$
P_{32} = \sin^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32}),
$$

\n
$$
P_{4ST \Delta m_{atm}}^{2}
$$

\n
$$
\Delta_{ij} = \frac{\Delta m_{ij}^{2}L}{4E_{\nu}}
$$

\n
$$
P_{4ST \Delta m_{atm}}^{2}
$$

$$
\Delta m_{ij}^2 \equiv m_i^2 - m_j^2
$$

\n
$$
\Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2
$$

\n
$$
|\Delta m_{32}^2| \approx 2.5 \times 10^{-3} \text{ eV}^2
$$

\nNH: $|\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$
\nIH: $|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$

 $\sin^2(\theta_{12}) = 0.307 \pm 0.013$ $\sin^2(\theta_{13}) = (2.18 \pm 0.07) \times 10^{-2}$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., PRD78, 071302 (2008) L. Zhan, PRD78:111103, 2008, PRD79:073007, 2009 J. Learned et al., arXiv:0810.2580 Y.F Li et al, PRD 88, 013008 (2013)

> Independent of θ_{23} and CP phase

Reactor antineutrino detection

signals to reject uncorrelated background

Oscillated antineutrino spectrum

Central detector:

- Acrylic sphere with liquid scintillator
- 17571 large PMTs (20-inch)
- 25600 small PMTs (3-inch)
- 78% PMT coverage
- PMTs in water buffer

Water Cerenkov muon veto:

- 2400 20" PMTs
- 35 ktons ultra-pure water
- Efficiency > 95%
- Radon control \rightarrow less than 0.2 Bq/m³

Compensation coils:

- Earth magnetic field <10%
- Necessary for 20" PMTs

Top tracker:

- Precision muon tracking
- 3 plastic scintillator layers
- Covering half of the top of the water pool

- - backgrounds
	- \Rightarrow Tag & reconstruct cosmic-rays tracks

Detector:

- \Rightarrow Top tracker: refurbished OPERA scintillators
- \Rightarrow Water Cerenkov detector
- **Pool lining: HDPE**
- **Earth magnetic field compensation coil**

Central Detector: Steel Truss & Acrylic Sphere

- Stainless steel structure to hold the acrylic sphere and to anchor the PMTs
	- ► Supporting bar to hold the acrylic tank
	- \triangleright Stress of the acrylic < 3.5 MPa everywhere
- Main issues:
	- ► Mechanical precision for 3 mm PMT clearance
	- \blacktriangleright Thermal expansion matching: 21°C \pm 1°C
	- ► Earthquake and liquid-solid coupling
	- ► Acrylic transparency > 96%
	- ► Radiopurity U/Th/K: Acrylic $\lt 1$ ppt, Steel $\lt 1$ ppb

More than 200 Acrylic panels

Panel size: 3 m × 8 m × 120 mm

Monica Sisti - NuPhys 2019
Monica Sisti - NuPhys 2019 **Acrylic panel mass production started**

- 15000 MCP-PMTs from NNVT (Northern Night Vision Technology)
- 5000 dynode PMTs from Hamamatsu (R12860 HQE)
- 17571 PMTs will read out the scintillation light of the Central Detector
- In production since 2016
- ◆ PMT testing:
	- Finished for dynode PMTs
	- ∼10000 of 15000 MCP-PMTs already tested

Acrylic cover to protect from implosion chain reaction

Large PMT testing facility

PMT Testing Containers (all PMTs):

- Capacity: 36 (-5) PMTs per Container
- Relative PDE Measurement
	- 1 fixed & 4 rotating reference PMTs
- Four containiers
	- 1 & 2 operational
	- 3 & 4 commissioned
- Magnetic shielding: 10% EMF
- Climate control systems
- Two light sources:
	- stabilized LED
	- Picosecond-Laser

Two testing containers in Zhongshan (Pan-Asia)

PMT test box with PMT holder Light sources used in the testing containers

Scanning Station (5-10% of PMTs):

- Provide non-uniformity measurement of PMT parameters
- Study dependence of PMT performance on magnetic field
- Provide a tool for precise PMT studies and cross calibration

PMT in the scanning station

PDE differences (photocathode)

- **20000 ch. for LPMT & 100 m cable needed**
- **Dynamic range: 1- 4000 PE**
- ◆ Noise: < 10% @ 1 PE
- **Resolution: [10%@1](mailto:10%25@1) PE, 1%@100 PE**
- **Failure rate: < 0.5%/6 years**
- **Final solution: 1 GHz sampling FADC in a small**

box (\times **3 ch.) in water; all cables in corrugated pipes**

Double calorimetry

- **Always in photon counting mode**
- **Less non-linearity**: calibration of large PMT array
- **Better dynamic range** for high energy signals

Higher granularity of the CD

25600 PMTs in the Central Detector

- **2.5% coverage**
- Provided by HZC Photonics (Hainan, PR China)

Can effectively help in:

- Muon tracking (+ shower muon calorimetry)
- **Supernova readout**
- Solar oscillation parameter measurement

∼ 200 boxes × 128 PMTs

3" PMT

x 128

Under water box provides supply for 128 PMTs (Prototype already built and successfully tested!) **Liquid Scintillator**

Purification of LAB in 4 Steps:

- **Al2O³ filtration column:** improvement of **optical properties**
- **Distillation:** removal of **heavy metals**, improvement of transparency
- **Water Extraction (underground):** removal of **radio isotopes** from uranium and thorium chains and furthermore of **40K**
- **Steam / Nitrogen Stripping (underground):** removal of **gaseous impurities** like Ar, Kr and Rn

Optical Requirements:

 Light output: **∼10.000 Photons / MeV → ∼1200 p.e. / MeV** Attenuation length: **> 20 m @ 430 nm**

Required Radiopurity:

Reactor neutrinos:

```
238U / 232Th < 10-15 g/g, 40K < 10-16 g/g, 210Pb < 10-22 g/g, 14C < 10-17 g/g
```
Solar neutrinos:

Monica Sisti - NuPhys 2019 **²³⁸U / 232Th < 10-17 g/g, 40K < 10-18 g/g, 210Pb < 10-24 g/g, 14C < 10-18 g/g**

Online Scintillator Internal Radioactivity Investigation System

Liquid Scintillator purity monitor:

Detect radioactive contaminated scintillator **after purification** but **before putting** it into the acrylic vessel!

Exploit fast coincidences in the 238U and 232Th chains

18 ton LS volume (Ø=3 m, H=3 m)

Instrumentation:

68x 20" PMTs for the scintillator 12x 20" PMTs for the myon veto

Expected radiopurity level sensitivity (Simulation):

JUNO IBD limit within a few hours JUNO solar limit possible

Civil construction

Since 2015 a new underground laboratory with a 700 m overburden and infrastructure at the surface is under construction

JUNO location

Sensitivity of vMO determination

Fit data against both models

Systematics induced by:

- Energy resolution
- Energy non-linearity
- **Distribution of reactor cores**
- ...

Sensitivity estimation

Assume NH as true MH, and fit the spectrum with false and true MH cases respectively, to get: $\Delta \chi^2 = \chi^2$ (false) – χ^2 (true)

$$
\chi_{\text{REA}}^2 = \sum_{i=1}^{N_{\text{bin}}} \frac{[M_i - T_i(1 + \sum_k \alpha_{ik} \epsilon_k)]^2}{M_i} + \sum_k \frac{\epsilon_k^2}{\sigma_k^2}
$$

$$
\Delta \chi_{\text{MH}}^2 = |\chi_{\text{min}}^2(\text{N}) - \chi_{\text{min}}^2(\text{I})|
$$

20 Monica Sisti - NuPhys 2019 **Monica Sisti - NuPhys 2019 Concernsive Concernsi**

JUNO sensitivity (6 years of data)

- Large scale fine structures constrained by Daya Bay experiment
- **A known fine structure does not hurt JUNO MH determination** \Rightarrow Tested with multiple spectra with fine local structure from ab initio calculation (PRL 114:012502, 2015) \rightarrow no major effect on JUNO sensitivity
- **Unknown fine structure might have a larger impact**

arXiv:1710.07378 Relative difference of 3 synthetic spectra to ILL data (Huber-Muller model)

Fine structure depends on the ab-initio calculation using nuclear database and can not be precisely determined.

Taishan Antineutrino Observatory (TAO), a satellite exp. of JUNO.

Measure reactor neutrino spectrum with unprecedented E resolution: ~1.5% / √*E* [MeV] Provide model-independent reference spectrum for JUNO

- **2.6 ton Gd-LS in a spherical vessel** – **1-ton Fiducial Volume, 4000 ν's/day** – **10 m² SiPM of 50% PDE**
- **Operate at -50℃**
- **From Inner to Outside**
	- –**Gd-LS working at -50℃**

JUNO-TAO

- **SiPM and support**
- **Cryogenic vessel**
- **1~1.5 m water or HDPE shielding**
- **Muon veto**
- **Laboratory in a basement at -10 m,**
- 30-35 m from Taishan core (4.6 GW_{th})
- **Plan to be online in 2021**

Precision measurement of oscillation parameters

Probing the unitarity of U_{PMNS} **to** \sim **1%**

JUNO: a neutrino underground observatory

Supernova (SN) burst neutrinos

- in form of ν
- Galactic core-collapse SN rate: ~ 3 per century
- JUNO will be able to observe the 3 SN phases from core-collapses happening in our own Galaxy and its satellites
- JUNO will be able to make a real time detection of SN bursts and take part in international SN alert, e.g. SNEWS

Detection channels in JUNO

Supernova (SN) burst neutrinos

The measurement is almost background free, since SN burst ν lasts for ~10 s

- Full flavor detection and low energy threshold, \sim 0.2 MeV in LS
- pES is a promising channel, which can provide more informations with respect to other type of detectors (e.g. WC, Lar-TPC)
- Pulse Shape Discrimination (PSD) to distinguish between eES and pES

Solar neutrinos

Open issues to be investigated by JUNO:

- Better determination of the oscillation parameters, to test the mild tension between solar and reactor data
- Solution to the solar metallicity problem by improving the accuracy on ⁷Be and ⁸B fluxes
- Analysis of the energy dependence of the $\bm{\mathsf{v}}_{_{\bm{\mathsf{e}}}}$ survival probability (up-turn in $^8\bm{\mathsf{B}}_{_{\bm{\mathsf{e}}}}$ spectrum) to study the transition from vacuum to matter dominated regions

Main detection channel: elastic scattering

$$
\nu_{\mathrm{e},\mu,\tau}+e^-\rightarrow\nu_{\mathrm{e},\mu,\tau}+e^-
$$

Radioactive background is a severe challenge

 →required internal radiopurity of LS: 10^{-15} g/g U/Th, 10^{-16} g/g K baseline 10^{-17} g/g U/Th, 10^{-18} g/g K solar phase **→**better muon veto approach

Three main observables:

- Electron kinetic energy spectrum
- Day-night asymmetry
- v_e ¹³C charged-current channel $(E_{th}~2.2$ MeV) [for the first time]

- **JUNO will be the largest neutrino observatory ever built with unprecedented energy resolution for detectors of this type**
- **Main goal: determine the neutrino mass ordering with a sensitivity of 3 − 4 σ (with** $|\Delta m_{\mu\mu}^2|$ **~ 1%)**
- **First detector to see many oscillation cycles in the same experiment**
- **Sub-percent measurement of neutrino mixing parameters**
- **Very rich parallel physics program, including Supernova neutrinos, atmospheric neutrinos, solar neutrinos, geo-neutrino, nucleon decays, and exotic searches**
- **JUNO was approved in 2013 and the international collaboration was established in 2014**

Very strong and tight R&D program and construction schedule

• Detector construction will be completed by 2021

77 members from **17 countries** for a total of **632 collaborators**

The JUNO collaboration

Three observers:

- Department of Physics, University of Malaya (Kuala Lumpur)
- University of Zagreb (Croatia)
- Yale University (USA)

77 member from **17 countrie** for a total of **632 collaborat**

The JUNO collaboration

Three observers:

- Department of Physics, University of Malaya (Kuala Lumpur)
- University of Zagreb (Croatia)
- Yale University (USA)

BACK UP SLIDES

Expected background

Liquid scintillator purification pilot plants (in Daya Bay)

Paper Stripping & Distillation pilot plants: NIM A 925 (2019) 6, arXiv: 1902.05288

Main method

- \Rightarrow Routinely Source into LS by
	- ACU: at central axis
	- rope loop: a plane
- \Rightarrow Source into Guided tube
- \Rightarrow "sub-marine": anywhere in the LS

Choice of sources & location scan

 \Rightarrow Simulation shows that the response map of the detector can be obtained

R&D on key technical issues

- \Rightarrow Source deployment
- \Rightarrow Source locating system

Diffused Supernova ν background (DSNB)

- DSNB rate: approx. **10 core collapse/sec** in the visible universe
- Provide information of star formation rate, emission from average CCSNe and BHs.
- **Pulse Shape Discrimination** to suppress background, mainly **atmospheric neutrinos**
- The expected **detection significance is ~3σ** after 10 years of data taking in JUNO, with ~15 MeV, background systematic uncertainty ~20%

Atmospheric neutrinos

- MH determination via matter effect
- Complementary to MH with reactor neutrinos
- \cdot 1-2 σ for 10 years data taking
- \cdot θ_{23} accuracy of 6 deg

Monica Sisti - NuPhys 2019

Geo-neutrinos

Geo-ν as a tool to explore the composition of the Earth and to estimate the amount of radiogenic power driving the Earth's engine

 238 ^T \rightarrow $^{206}\text{Pb} + 8\alpha + 6\beta^{-} + 6\bar{\nu}_e$ ²³²Th \rightarrow ²⁰⁸Pb + 6 α + 4 β ⁻ + $4\overline{\nu_e}$ 40 K \rightarrow 40 Ca + β^- + $\bar{\nu}_e$

Detection channel: IBD

- Expected 400-500 IBD/y, larger than all accumulated geo-ν events before
- Challenge: reactor-ν background, ~40 times larger
- Precision will go from 13% (1 year) to 5% (10 years)
- Measure U/Th ratio at percent level
- Interdisciplinary team of physicists and geologists at work to develop a local refined crust model (required to get information on the mantle)

• Two possible decay channels:

- Current best limits set by the Super-Kamiokande experiment
- \bullet Kaon is invisible in a water Cherenkov detector
- JUNO will focus on the K decay mode to take advantage of the LS technique

