

NuPhys2019: Prospects in Neutrino Physics

16-18 December 2019 Cavendish Conference Centre, London, UK Europe/London timezone

THE JUNO EXPERIMENT: **PHYSICS PROSPECTS, DESIGN AND STATUS**

Monica Sisti INFN and Università, Milano-Bicocca

Jiangmen Underground Neutrino Observatory

Massive: ~20 kton Liquid Scintillator (LS) **Underground**: ~700 m overburden **High resolution**: 3% / \sqrt{E} (MeV) **Energy scale precision**: < 1%

Monica Sisti - NuPhys 2019

Main physics goal:

→ v Mass Ordering determination

Rich physics possibilities:

- Precision measurement of oscillation parameters
- Supernovae neutrinos
- Solar neutrinos
- Atmospheric neutrinos
- Geo-neutrinos
- Nucleon decay

The neutrino mass ordering (vMO) open issue

In 2002 Petcov and Piai suggested that interference effects between Δm_{sol}^2 and Δm_{atm}^2 driven oscillations can be used by reactor experiments to infer the neutrino mass hierarchy

made possible by "large value" of $\theta_{_{13}}$

JUNO is the first experiment to see both Δm^2 at the same time

$$\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$$

$$\Delta m_{21}^{2} \approx 7.5 \times 10^{-5} \text{ eV}^{2}$$

$$|\Delta m_{32}^{2}| \approx 2.5 \times 10^{-3} \text{ eV}^{2}$$

$$\text{NH: } |\Delta m_{31}^{2}| = |\Delta m_{32}^{2}| + |\Delta m_{21}^{2}|$$

$$\text{IH: } |\Delta m_{31}^{2}| = |\Delta m_{32}^{2}| - |\Delta m_{21}^{2}|$$

$$Daya Bay \qquad \text{KamLAND}$$

The neutrino mass ordering (vMO) at reactors

$\overline{\nu}_{e}$ survival probability:

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^{4}(\theta_{13})\sin^{2}(2\theta_{12})\sin^{2}(\Delta_{21})$$

$$P_{31} = \cos^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{31})$$

$$P_{32} = \sin^{2}(\theta_{12})\sin^{2}(2\theta_{13})\sin^{2}(\Delta_{32}),$$

$$FAST \Delta m_{atm}^{2}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^{2}L}{4E_{\nu}}$$
Monica Sisti - NuPhys 2019

 $\Delta m_{ij}^{2} \equiv m_{i}^{2} - m_{j}^{2}$ $\Delta m_{21}^{2} \approx 7.5 \times 10^{-5} \text{ eV}^{2}$ $|\Delta m_{32}^{2}| \approx 2.5 \times 10^{-3} \text{ eV}^{2}$ NH: $|\Delta m_{31}^{2}| = |\Delta m_{32}^{2}| + |\Delta m_{21}^{2}|$ IH: $|\Delta m_{31}^{2}| = |\Delta m_{32}^{2}| - |\Delta m_{21}^{2}|$

 $sin^{2}(\theta_{12}) = 0.307 \pm 0.013$ $sin^{2}(\theta_{13}) = (2.18 \pm 0.07) \times 10^{-2}$

S.T. Petcov et al., PLB533(2002)94
S.Choubey et al., PRD68(2003)113006
J. Learned et al., PRD78, 071302 (2008)
L. Zhan, PRD78:111103, 2008, PRD79:073007, 2009
J. Learned et al., arXiv:0810.2580
Y.F Li et al, PRD 88, 013008 (2013)

Independent of θ_{23} and CP phase

Reactor antineutrino detection

signals to reject uncorrelated background

Oscillated antineutrino spectrum

Experiment	Daya Bay	BOREXINO	KamLAND	JUNO	
LS mass	20 ton	~300 ton	~1 kton	20 kton	
Coverage	~12%	~34%	~34%	~80%	
Energy resolution	~7.5%/√E	~5%/ √ E	~6%/√E	~3%/ √ E	
Light yield	~ 160 p.e. / MeV	~ 500 p.e. / MeV	~ 250 p.e. / MeV	~ 1200 p.e. / MeV	

Central detector:

- Acrylic sphere with liquid scintillator
- 17571 large PMTs (20-inch)
- 25600 small PMTs (3-inch)
- 78% PMT coverage
- PMTs in water buffer

Water Cerenkov muon veto:

- 2400 20" PMTs
- 35 ktons ultra-pure water
- Efficiency > 95%
- Radon control \rightarrow less than 0.2 Bq/m³

Compensation coils:

- Earth magnetic field <10%
- Necessary for 20" PMTs

Top tracker:

- Precision muon tracking
- 3 plastic scintillator layers
- Covering half of the top of the water pool

- Tasks:
 - Shield rock-related backgrounds
 - ➡ Tag & reconstruct cosmic-rays tracks

• Detector:

- Top tracker: refurbished OPERA scintillators
- ➡ Water Cerenkov detector
- Pool lining: HDPE
 Earth magnetic field compensation coil

Central Detector: Steel Truss & Acrylic Sphere

- Stainless steel structure to hold the acrylic sphere and to anchor the PMTs
 - Supporting bar to hold the acrylic tank
 - ► Stress of the acrylic < 3.5 MPa everywhere
- Main issues:
 - ► Mechanical precision for 3 mm PMT clearance
 - ► Thermal expansion matching: 21°C ± 1°C
 - Earthquake and liquid-solid coupling
 - ► Acrylic transparency > 96%
 - ▶ Radiopurity U/Th/K: Acrylic < 1 ppt, Steel \leq ppb

More than 200 Acrylic panels

Panel size: 3 m × 8 m × 120 mm

Acrylic panel mass production started

- 15000 MCP-PMTs from NNVT (Northern Night Vision Technology)
- 5000 dynode PMTs from Hamamatsu (R12860 HQE)
- ◆ 17571 PMTs will read out the scintillation light of the Central Detector
- In production since 2016
- PMT testing:
 - Finished for dynode PMTs
 - ~10000 of 15000 MCP-PMTs already tested

Acrylic cover to protect from implosion chain reaction

Specifications	Unit	MCP-PMT (NNVT)	R12860 Hamamatsu HQE
Det. Efficiency (QE*CE)	%	26.9% (new Type: 30.1%)	28.1%
Peak to Valley of SPE		3.5, (>2.8)	3, (>2.5)
TTS on the top point	ns	12, (<15)	2.7, (<3.5)
Rise time / Fall Time	ns	RT∼2, FT~12	RT~5, FT~9
Anode Dark Count	kHz	20, (<30)	10, (<50)
After Pulse Rate	%	1, (<2)	10, (<15)
Radioactivity (glass)	ppb	²³⁸ U: 200 ²³² Th: 120 ⁴⁰ K: 4	²³⁸ U: 400 ²³² Th: 400 ⁴⁰ K: 40

Large PMT testing facility

PMT Testing Containers (all PMTs):

- Capacity: 36 (-5) PMTs per Container
- Relative PDE Measurement
 - 1 fixed & 4 rotating reference PMTs
- Four containiers
 - 1 & 2 operational
 - 3 & 4 commissioned
- Magnetic shielding: 10% EMF
- Climate control systems
- Two light sources:
 - stabilized LED
 - Picosecond-Laser

Two testing containers in Zhongshan (Pan-Asia)

PMT test box with PMT holder

Light sources used in the testing containers

Scanning Station (5-10% of PMTs):

- Provide non-uniformity measurement of PMT parameters
- Study dependence of PMT performance on magnetic field
- Provide a tool for precise PMT studies and cross calibration

PMT in the scanning station

PDE differences (photocathode)

- 20000 ch. for LPMT & 100 m cable needed
- Dynamic range: 1-4000 PE
- Noise: < 10% @ 1 PE
- Resolution: 10%@1 PE, 1%@100 PE
- Failure rate: < 0.5%/6 years</p>
- Final solution: 1 GHz sampling FADC in a small box (×3 ch.) in water; all cables in corrugated pipes

Double calorimetry

- Always in photon counting mode
- **Less non-linearity**: calibration of large PMT array
- **Better dynamic range** for high energy signals

Higher granularity of the CD

25600 PMTs in the Central Detector

- 2.5% coverage
- Provided by HZC Photonics (Hainan, PR China)

Can effectively help in:

- Muon tracking (+ shower muon calorimetry)
- Supernova readout
- Solar oscillation parameter measurement

Arrangement of large and small PMTs

~ 200 boxes × 128 PMTs

x 128

Under water box provides supply for 128 PMTs (Prototype already built and successfully tested!)

Purification of LAB in 4 Steps:

- Al₂O₃ filtration column: improvement of optical properties
- **Distillation:** removal of **heavy metals**, improvement of transparency
- Water Extraction (underground): removal of radio isotopes from uranium and thorium chains and furthermore of ⁴⁰K
- Steam / Nitrogen Stripping (underground): removal of gaseous impurities like Ar, Kr and Rn

Optical Requirements:

Light output: ~10.000 Photons / MeV \rightarrow ~1200 p.e. / MeV Attenuation length: > 20 m @ 430 nm

Required Radiopurity:

Reactor neutrinos:

```
^{238}\text{U} / ^{232}\text{Th} < 10^{-15} g/g, ^{40}\text{K} < 10^{-16} g/g, ^{210}\text{Pb} < 10^{-22} g/g, ^{14}\text{C} < 10^{-17} g/g
```

Solar neutrinos:

²³⁸U / ²³²Th < 10⁻¹⁷ g/g, ⁴⁰K < 10⁻¹⁸ g/g, ²¹⁰Pb < 10⁻²⁴ g/g, ¹⁴C < 10⁻¹⁸ g/g

<u>Online Scintillator Internal Radioactivity Investigation System</u>

Liquid Scintillator purity monitor:

Detect radioactive contaminated scintillator **after purification** but **before putting** it into the acrylic vessel!

Exploit fast coincidences in the ²³⁸U and ²³²Th chains

18 ton LS volume (Ø=3 m, H=3 m)

Instrumentation:

68x 20" PMTs for the scintillator 12x 20" PMTs for the myon veto

Expected radiopurity level sensitivity (Simulation):

JUNO IBD limit within a few hours JUNO solar limit possible

Civil construction

Since 2015 a new underground laboratory with a 700 m overburden and infrastructure at the surface is under construction

JUNO location

Sensitivity of vMO determination

Fit data against both models

Systematics induced by:

- Energy resolution
- Energy non-linearity
- Distribution of reactor cores
- ...

Sensitivity estimation

Assume NH as true MH, and fit the spectrum with false and true MH cases respectively, to get: $\Delta \chi^2 = \chi^2$ (false)- χ^2 (true)

$$\chi_{\text{REA}}^{2} = \sum_{i=1}^{N_{\text{bin}}} \frac{\left[M_{i} - T_{i}(1 + \sum_{k} \alpha_{ik} \epsilon_{k})\right]^{2}}{M_{i}} + \sum_{k} \frac{\epsilon_{k}^{2}}{\sigma_{k}^{2}}$$
$$\Delta \chi_{\text{MH}}^{2} = \left|\chi_{\text{min}}^{2}(N) - \chi_{\text{min}}^{2}(I)\right|$$

degradation due to real reactor core distribution 20

JUNO sensitivity (6 years of data)

- Large scale fine structures constrained by Daya Bay experiment
- A known fine structure does not hurt JUNO MH determination
 ⇒ Tested with multiple spectra with fine local structure from ab initio
 calculation (PRL 114:012502, 2015) → no major effect on JUNO
 sensitivity
- $1.04 \\ 1.02 \\ 1.00 \\ 0.98 \\ 0.96 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ E_{v} [MeV]$
- Unknown fine structure might have a larger impact

Relative difference of 3 synthetic spectra to ILL data (Huber-Muller model) arXiv:1710.07378

Fine structure depends on the ab-initio calculation using nuclear database and can not be precisely determined.

Taishan Antineutrino Observatory (TAO), a satellite exp. of JUNO.

Measure reactor neutrino spectrum with unprecedented E resolution: ~1.5% / \sqrt{E} [MeV] Provide model-independent reference spectrum for JUNO

- 2.6 ton Gd-LS in a spherical vessel
 -1-ton Fiducial Volume, 4000 v's/day
 -10 m² SiPM of 50% PDE
- Operate at -50°C
- From Inner to Outside
 - -Gd-LS working at -50°C

JUNO-TAO

- -SiPM and support
- Cryogenic vessel
- -1~1.5 m water or HDPE shielding
- -Muon veto
- Laboratory in a basement at -10 m,
- 30-35 m from Taishan core (4.6 GW_{th})
- Plan to be online in 2021

Precision measurement of oscillation parameters

		Δm_{21}^2	$ \Delta m^2_{31} $	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}$	$\sin^2 \theta_{23}$	δ
	Dominant Exps.	KamLAND	T2K	SNO+SK	Daya Bay	$NO\nu A$	T2K
Current precision	Individual 1σ	2.4%	2.6%	4.5%	3.4%	5.2%	70%
	Nu-FIT 4.0	2.4%	1.3%	4.0%	2.9%	3.8%	16%

	Statistics	+BG, +1% bin-to-bin +1% EScale , +1% EnonL		
$\sin^2 \theta_{12}$	0.54%	0.67%		
Δm_{21}^2	0.24%	0.59%		
Δm^2_{ee}	0.27%	0.44%		

Probing the unitarity of U_{PMNS} to ~1%

JUNO: a neutrino underground observatory

Supernova (SN) burst neutrinos

- Core collapse SN emits 99% of energy in form of ν
- Galactic core-collapse SN rate:
 ~ 3 per century
- JUNO will be able to observe the 3 SN phases from core-collapses happening in our own Galaxy and its satellites
- JUNO will be able to make a real time detection of SN bursts and take part in international SN alert, e.g. SNEWS

Channel	Туре	Events for different $\langle E_{\nu} \rangle$ values			
		12 MeV	14 MeV	16 MeV	
$\overline{\overline{\nu}_{\rm e} + p \rightarrow e^+ + n}$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}	IBD main
$\nu + p \rightarrow \nu + p$	NC	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}	detection channel:
$\nu + e \rightarrow \nu + e$	ES	3.6×10^{2}	3.6×10^2	3.6×10^2	~5000 events from
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	1.7×10^2	3.2×10^2	5.2×10^2	a SN at a distance
$\nu_{\rm e} + {}^{12}{ m C} \rightarrow e^- + {}^{12}{ m N}$	CC	0.5×10^2	0.9×10^2	1.6×10^2	of 10 kpc
$\overline{\nu}_{\rm e} + {}^{12}{\rm C} \rightarrow e^+ + {}^{12}{\rm B}$	CC	0.6×10^{2}	1.1×10^{2}	1.6×10^{2}	

Detection channels in JUNO

Supernova (SN) burst neutrinos

The measurement is almost background free, since SN burst v lasts for ~10 s

- Full flavor detection and low energy threshold, ~0.2 MeV in LS
- pES is a promising channel, which can provide more informations with respect to other type of detectors (e.g. WC, Lar-TPC)
- Pulse Shape Discrimination (PSD) to distinguish between eES and pES

Solar neutrinos

Open issues to be investigated by JUNO:

- Better determination of the oscillation parameters, to test the mild tension between solar and reactor data
- Solution to the solar metallicity problem by improving the accuracy on ⁷Be and ⁸B fluxes
- Analysis of the energy dependence of the v_e survival probability (up-turn in ⁸B spectrum) to study the transition from vacuum to matter dominated regions

Main detection channel: elastic scattering

$$u_{\mathrm{e},\mu, au} + e^-
ightarrow
u_{\mathrm{e},\mu, au} + e^-$$

Radioactive background is a severe challenge

→ required internal radiopurity of LS:
 10⁻¹⁵ g/g U/Th, 10⁻¹⁶ g/g K baseline
 10⁻¹⁷ g/g U/Th, 10⁻¹⁸ g/g K solar phase
 → better muon veto approach

Three main observables:

- Electron kinetic energy spectrum
- Day-night asymmetry
- v_e ¹³C charged-current channel (E_{th}~2.2 MeV) [for the first time]

- JUNO will be the largest neutrino observatory ever built with unprecedented energy resolution for detectors of this type
- Main goal: determine the neutrino mass ordering with a sensitivity of 3 4 σ (with $\left|\Delta m_{_{\mu\mu}}^{^{2}}\right| \sim$ 1%)
- First detector to see many oscillation cycles in the same experiment
- Sub-percent measurement of neutrino mixing parameters
- Very rich parallel physics program, including Supernova neutrinos, atmospheric neutrinos, solar neutrinos, geo-neutrino, nucleon decays, and exotic searches
- JUNO was approved in 2013 and the international collaboration was established in 2014

Very strong and tight R&D program and construction schedule

Detector construction will be completed by 2021

77 members from 17 countries for a total of 632 collaborators

The JUNO collaboration

Country	Institute	Country	Institute	Country	Institute
Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
Brazil	UEL	China	UCAS	Italy	INFN di Frascati
Chile	PCUC	China	USTC	Italy	INFN-Ferrara
Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Padova
China	CAGS	China	Xi'an JT U.	Italy	INFN-Perugia
China	ChongQing University	China	Xiamen University	Italy	INFN-Roma 3
China	CIAE	China	Zhengzhou U.	Latvia	IECS
China	DGUT	China	NUDT	Pakistan	PINSTECH (PAEC)
China	ECUST	China	CUG-Beijing	Russia	INR Moscow
China	Guangxi U.	China	ECUT-Nanchang City	Russia	JINR
China	Harbin Institute of Technology	Czech R.	Charles University	Russia	MSU
China	IHEP	Finland	University of Jyvaskyla	Slovakia	FMPICU
China	Jilin U.	France	LAL Orsay	Taiwan-China	National Chiao-Tung U.
China	Jinan U.	France	CENBG Bordeaux	Taiwan-China	National Taiwan U.
China	Nanjing U.	France	CPPM Marseille	Taiwan-China	National United U.
China	Nankai U.	France	IPHC Strasbourg	Thailand	NARIT
China	NCEPU	France	Subatech Nantes	Thailand	PPRLCU
China	Pekin U.	Germany	FZJ-ZEA	Thailand	SUT
China	Shandong U.	Germany	RWTH Aachen U.	USA	UMD1
China	Shanghai JT U.	Germany	TUM	USA	UMD2
China	IGG-Beijing	Germany	U. Hamburg	USA	UC Irvine
China	IGG-Wuhan	Germany	FZJ-IKP		

Three observers:

- Department of Physics, University of Malaya (Kuala Lumpur)
- University of Zagreb (Croatia)
- Yale University (USA)

77 members from 17 countries for a total of 632 collaborators

The JUNO collaboration

	Country	Institute	Country	Institute	Country	Institute
	Armenia	Yerevan Physics Institute	China	IMP-CAS	Germany	U. Mainz
	Belgium	Universite libre de Bruxelles	China	SYSU	Germany	U. Tuebingen
	Brazil	PUC	China	Tsinghua U.	Italy	INFN Catania
	Brazil	UEL	China	UCAS	Italy	INFN di Frascati
	Chile	PCUC	China	USTC	Italy	INFN-Ferrara
	Chile	UTFSM	China	U. of South China	Italy	INFN-Milano
	China	BISEE	China	Wu Yi U.	Italy	INFN-Milano Bicocca
	China	Beijing Normal U.	China	Wuhan U.	Italy	INFN-Pador
	China	CAGS	China	Xi'an JT U.	Italy	ואידי
	China	ChongQing University	China	Xiamen University	Italy	
	China	CIAE	China	Zhengzhou U.		
rs	China	DGUT	China	NUDT		
13	China	ECUST	China	CUCT		
	China	Guangxi U.	China			
26	China	Harbin Institute of Technology				MSU
	China	IHEP			. akia	FMPICU
)T	China	Jilin U.			Taiwan-China	National Chiao-Tung U
tors	China	T*		Jordeaux	Taiwan-China	National Taiwan U.
	Ch:		V -	CPPM Marseille	Taiwan-China	National United U.
			ance	IPHC Strasbourg	Thailand	NARIT
			France	Subatech Nantes	Thailand	PPRLCU
			Germany	FZJ-ZEA	Thailand	SUT
		Juong U.	Germany	RWTH Aachen U.	USA	UMD1
		Shanghai JT U.	Germany	TUM	USA	UMD2
	China	IGG-Beijing	Germany	U. Hamburg	USA	UC Irvine
	China	IGG-Wuhan	Germany	FZJ-IKP		

Three observers:

TH

- Department of Physics, University of Malaya (Kuala Lumpur)
- University of Zagreb (Croatia)
- Yale University (USA)

BACK UP SLIDES

Expected background

Liquid scintillator purification pilot plants (in Daya Bay)

Paper Stripping & Distillation pilot plants: NIM A 925 (2019) 6, arXiv: 1902.05288

Main method

- Routinely Source into LS by
 - ACU: at central axis
 - ✓ rope loop: a plane
- Source into Guided tube
- "sub-marine": anywhere in the LS

Choice of sources & location scan

Simulation shows that the response map of the detector can be obtained

R&D on key technical issues

- Source deployment
- Source locating system

Diffused Supernova v background (DSNB)

- DSNB rate: approx. **10 core collapse/sec** in the visible universe
- Provide information of star formation rate, emission from average CCSNe and BHs.
- Pulse Shape Discrimination to suppress background, mainly atmospheric neutrinos
- The expected **detection significance is ~3\sigma** after 10 years of data taking in JUNO, with ~15 MeV, background systematic uncertainty ~20%

Atmospheric neutrinos

IH

- MH determination via matter effect
- Complementary to MH with reactor neutrinos
- 1-2 σ for 10 years data taking
- θ_{23} accuracy of 6 deg

Geo-neutrinos

Geo-v as a tool to explore the composition of the Earth and to estimate the amount of radiogenic power driving the Earth's engine

 $\begin{array}{rcl} ^{238}\mathrm{U} & \rightarrow & ^{206}\mathrm{Pb} + 8\alpha + 6\beta^{-} + 6\bar{\nu}_{e} \\ ^{232}\mathrm{Th} & \rightarrow & ^{208}\mathrm{Pb} + 6\alpha + 4\beta^{-} + 4\bar{\nu}_{e} \\ ^{40}\mathrm{K} & \rightarrow & ^{40}\mathrm{Ca} + \beta^{-} + \bar{\nu}_{e} \end{array}$

Detection channel: IBD

- Expected 400-500 IBD/y, larger than all accumulated geo-v events before
- Challenge: reactor-v background, ~40 times larger
- Precision will go from 13% (1 year) to 5% (10 years)
- Measure U/Th ratio at percent level
- Interdisciplinary team of physicists and geologists at work to develop a local refined crust model (required to get information on the mantle)

Monica Sisti - NuPhys 2019

• Two possible decay channels:

$p \rightarrow \pi^0 + e^+$	(favored by GUT)
$p \rightarrow K^+ + v$	(favored by SUSY)

- Current best limits set by the Super-Kamiokande experiment
- Kaon is invisible in a water Cherenkov detector
- JUNO will focus on the K decay mode to take advantage of the LS technique

