

- Introduction
- Far Detector Design
- Neutrino Astrophysics & Proton Decay
- Beam and Near Detectors
- CP Violation, Mass Hierarchy & Mixing Angles
- Construction Schedule & 2nd Detector in Korea

Steve Playfer NuPhys2019, London, 18th December 2019

Hyper-K Proto-collaboration Sept. 2019 ~350 Collaborators from 17 countries

Hyper-Kamiokande Design Report arXiv:1805.04163

Far Detector (Kamioka)

Design is being finalised

Technical Report in preparation

Beam & Near **Detectors** (JPARC)

Conceptual **Design Report** in preparation

Hyper-K Far Detector

8x larger than Super-K (will be largest man made covern in the world)

Location 8km south of Super-K

➤ A 260kton tank of pure water

Inner Detector 216kt

Fiducial volume ~200kt Up to 40% photosensor coverage (40k 20" PMTs)

Outer Detector veto region

1m to 2m thick (~13k 3" PMTs)

Japanese budget request 2019 covers cavern excavation, tank, water system and half the photosensors.

International contributions are needed for more photosensors!

Photosensors – 20" PMTs

These are either Hamamatsu B&L or NNVT MCP-PMT

- Quantum efficiency 30% at 390nm (x1.4 compared to Super-K)
- > Collection efficiency 95% at 10⁷ gain (x1.3 compared to Super-K)
- ➤ Transit time spread 2.7ns for 1p.e. ➤ Charge resolution 27% for 1p.e.
- \triangleright Dark count rate 8.5kHz \rightarrow 5.7kHz (in past 2 years) \rightarrow 4kHz?

Photosensors - mPMT Modules

We are considering adding ~5,000 multi-PMT modules

- > 3" PMTs are Hamamatsu R14374 or ETEL D794KFL or HZC XP82B20
- Collection efficiency 45% due to packing fraction of PMTs
- ➤ Dark count rate 100-300Hz/PMT ➤ Transit time spread 1.3ns for 1p.e.

Improved spatial accuracy, timing, dynamic range, lower dark rate?

Cost comparison mPMT \$8k, 20" PMT + cover + electronics \$5k

Block diagram (20inch PMT readout electronics)

A broad neutrino physics programme... Energy range 4 MeV to 100 GeV

Upward-going atmospheric neutrinos

Oscillations are sensitive to mass hierarchy, θ_{23} octant and δ_{CP}

Difference in nue between oscillated and unoscillated flux $Cos \theta = -0.8$ NH, $\sin^2\theta_{23}$ =0.6, $\sin^2\theta_{13}$ =0.025, δ =40° NH, $\sin^2\theta_{23}=0.4$, $\sin^2\theta_{13}=0.025$, $\delta=40^\circ$ cos⊕ =-0.8 8.0 (a) $\Psi(v_e)/\Psi_0(v_e)$ –1 sin²Θ₂₃= 0.4 or 0.6 0.6 na resonance term 0.4 0.4 0.2 0.2 0 -0.2 -0.4 10 10 10 **NH or IH** IH, $\sin^2\theta_{22}=0.6$, $\sin^2\theta_{12}=0.025$, $\delta=40^\circ$ NH, $\sin^2\theta_{23}$ =0.6, $\sin^2\theta_{13}$ =0.025, δ =220° (d) 8.0 8.0 $\Psi(v_e)/\Psi_0(v_e)$ 0.6 0.4 0.2 0.6 0.4 0.2 0 -0.2 -0.4 10 10 10 Ev(GeV) E√(GeV)

This is just for electron neutrinos! For antineutrinos the MSW peak is suppressed in NH

Solar Neutrinos

Steve Playfer, NuPhys2019, London

Supernova Neutrinos

SN at 10kpc expect 50-100k events in 20s. Betelgeuse would give MHz!

Expect ~10 events from SN in M31 (Andromeda)

Inverse beta decay of anti- v_e on p gives flavour, energy and direction from e^+ (and n)

v+e⁻ scattering also gives energy and direction. Initial spike is sensitive to oscillations.

Supernova Relic Neutrinos

15-40 MeV anti- v_e from ancient SN detected by inverse β -decay

Neutron-tag crucial to reduce backgrounds n-tag with capture on H is 30-70% efficient (depends on dark rate and photocoverage)

n-tag with capture on Gd is >80% efficient (with a much lower mistag rate)

Proton Decay

Can also improve limit on decay to K⁺v but the signature for this is harder and there is atmospheric v background.

K⁺ is below water Cherenkov threshold Detect K⁺ decay to 236 MeV/c μ^+ in coincidence with 6.3 MeV γ from ¹⁵N* decay (after p decays in ¹⁶O)

We can improve limit on decay to $e^+\pi^0$ from 10^{34} to 10^{35} years

We may eventually run into background from atmospheric ν but neutron tags help reduce this.

J-PARC Beam

Off-axis 2.5degrees

 $E_v = 600 \text{ MeV (peak)}$

1.3MW beam power

Being upgraded for T2K

Will be available at start of Hyper-K

Further upgrades?

Near Detectors at 280m

Beam

INGRID monitors beam position

UA1 Magnet Yoke SMRD

TPCs FGDs

Downstream ECAL

Solenoid Coil

P0D ECAL ND280 magnetic spectrometer for v_e and wrong sign beam components

15

ND280 is being upgraded for T2K in 2021

Will be available at start of Hyper-K

Further upgrades?

Barrel ECAL

Intermediate Water Cherenkov

Located at 1-2km

Shaft is 50-100m deep

Tank diameter 10m, height 8m moves up and down shaft using buoyancy (pit water)

Spans off-axis angles 1 to 4°

Detector has 480 mPMTs

Measures water Cherenkov signals as function of v energy and flavour

Determines v cross-sections

A new detector for Hyper-K Planned to be ready in 2026

Systematics aimed for by Hyper-K

HK design report arXiv:1805.04163		Flux & ND-constrained cross section	ND-independent cross section	Far detector	Total
	Appearance	3.0%	0.5%	0.7%	3.2%
$\nu \mod \epsilon$	e Disappearance	3.3%	0.9%	1.0%	3.6%
	Appearance	3.2%	1.5%	1.5%	3.9%
$\overline{\nu} \mod \epsilon$	e Disappearance	3.3%	0.9%	1.1%	3.6%
σ to determine CPV	16 Hyper-K 12 10 years 10 8 6 4 2 -3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	% 5ơ, 77% 3ơ) i (70% 5ơ, 83% 3ơ)	CP reach depon Syst. errotat. error ~3%	ors!

Steve Playfer, NuPhys2019, London

Hyper-K long baseline (10 years)

Assumes Normal Hierarchy, beam $v : \overline{v} = 1 : 3$

Long baseline beam + atmospheric v

Octant of θ_{23} can be resolved for $\sin^2\theta_{23} < 0.45$ or $\sin^2\theta_{23} > 0.55$

CP violation can be measured at 3σ (5σ) over 75% (60%) of the full range of δ_{CP}

Error on $\delta_{CP} = 0 \ (\pi/2)$ is $7^{\circ} \ (20^{\circ})$

Second Detector in Korea arxiv

arXiv:1611.06118v3 PTEP (2018) 6,063C01

Baseline 1100km At 2nd maximum (750 MeV) At 1st maximum (2 GeV)

A number of sites are being considered with off-axis beam of 1 to 2 degrees.

Aim is to build this after Kamioka far detector is running.

First far detector (Kamioka)

Second far detector (Korea)

CP violation at 2nd max is x3 Compensates for $1/R^2$ Same δ_{CP} statistical accuracy Systematics smaller

More sensitivity to matter effects and non-SM physics

Construction Timeline

Technical Report

2018 - Japanese seed-funding and U.Tokyo commitment to 2020 start
 June 2019 - Full Japanese funding application submitted
 2020 onwards - Funding applications in other participating countries

メリークリスマス そして 年賀状

December 13th 2019
Japanese cabinet approves
35 Oku Yen (\$35M) for first year
of Hyper–K construction in 2020.

Nature – December 16th 2019

Japan will build the world's largest neutrino detector

Cabinet greenlights US\$600-million Hyper-Kamiokande
experiment, which scientists hope will bring
revolutionary discoveries.

BACKUP SLIDES

Source water fills tank in 240 days at 45 tons/hour.

Purification, cooling and recirculation of water at 155 tons/hour. May double this after start of experiment and add Gd.

Comparison of SK and HK PMTS

Detection efficiency x 1.9

Based on 136 HK PMTs installed in Super-K in 2018

Charge and time resolutions almost x2 better

Readout Electronics

Three signal digitizers are being considered:

- 1) QTC chip developed for Super-K in 2008
- 2) FADC waveform sampling 100-250MHz
- 3) Switched capacitor arrays

Hit rate is driven by Supernova burst

Dynamic range is x10 less for mPMTs

Front-end electronics is inside tank Power limit driven by water cooling

Item	Requirements	
Trigger	self triggering for each channel	
PMT impedance	50Ω	
Signal reflection	<0.1%	
Discriminator threshold	<0.25 p.e. (well below 1 p.e.)	
Processing speed/hit	$<1 \mu s$	
(channel dead time)		
Maximum hit rate	>1 MHz for each channel	
Charge dynamic range	0.1 to 1250 p.e. (0.2 to 2500 pC)	
Charge resolution	RMS ~ 0.05 p.e. (below 25 p.e.)	
Timing LSB	<0.5ns	
Timing resolution	RMS <0.3 ns at 1 p.e.	
	RMS <0.2 ns above 5 p.e.	
Power consumption >	<1W per channel	

Designing watertight front-end boxes (24 channels) and watertight fibre-optic/LV and signal/HV connectors

Need up to 2200 of these boxes

Another area where international contributions are expected

Data Acquisition System

Hyper-K Reference Design

Back end network

Designed to handle nearby Supernova (Betelgeuse):

75M v events in 1s, 180M events in 10s, 327GB of data, 1MHz hits/PMT

Calibration systems

These are based on 20 year of experience at Super-K, but need to improve accuracy at Hyper-K.

➤ Low energy calibration uses Linac and radioactive sources:
 D-T generator, Cf(Ni), Am(Be)
 Aiming at 0.5% calibration of energy scale for solar v

 Light injection system monitors water transparency and PMT response

 \blacktriangleright High energy calibration uses cosmic ray data: Stopping muons, Michel electrons, π^0 mass Statistics will increase at Hyper-K

Motivation for Near Detectors

- To measure the product of the unoscillated neutrino flux (N_v) times cross-section (σ_v) as a function of E_v , off-axis angle, horn current (F/B) and v flavour $(v_e/\overline{v_e}/v_u/\overline{v_u})$
- ➤ To predict the expected event rates in the far detector as a function of the oscillation parameters.

 Uncertainties in these predictions enter as systematic errors on Hyper-K CP violation measurements.
- To measure the properties of v interactions, their detector signatures and final state particles.

The differences between the near and far detectors should be minimized.

Off Axis Measurements

- Probe cross-sections and final states as a function of E_v
- Mean energy varies from 0.4GeV (4°) to 1.0GeV (1°)
- Fraction of v_e varies from 0.5% (1°) to 1.5% (4°), with a high energy tail from Kaon decays
- Can use linear combinations of different angles to define "quasi-monochromatic" beams
- Aim for direct measurement of $\sigma(\overline{\nu}_e)/\sigma(\nu_e)$ to few % accuracy

IWCD Reconstruction

mPMTs improve vertex resolution compared to 8" PMTs

Tuning of event reconstruction ongoing

Also expect better angular resolution and $e/\mu/\pi^0$ separation

