COSMIC MUON CHARACTERISATION IN LARTPCS

WOUTER VAN DE PONTSEELE – ON BEHALF OF THE MICROBooNE COLLABORATION

NuPhys, London
December 16, 2019

University of Oxford, Harvard University
Physics Goals

* Liquid Argon Time Projection Chamber (LArTPC) R&D.
* Address electromagnetic **low-energy excess** observed by MiniBooNE.
* **Cross-section** measurements on argon.
* First step in the **Fermilab short baseline neutrino program**.
LIQUID ARGON TIME PROJECTION CHAMBER

- Cathode Plane
- Incoming Neutrino
- Charged Particles
- Liquid Argon TPC
- Sense Wires
- E_{drift}
- 3 Planes, 8192 Wires, 3 mm wire spacing
LIQUID ARGON TIME PROJECTION CHAMBER

Cathode Plane

Incoming Neutrino

Scintillation light

Liquid Argon TPC

Sense Wires
U V Y

Fast light signal captured by 32 PMTs
LIQUID ARGON TIME PROJECTION CHAMBER

Liquid Argon TPC

Cathode Plane

Incoming Neutrino

E_{drift}

Ionization electrons

Sense Wires

U V Y

V wire plane waveforms

TPC readout:
Order milliseconds

Y wire plane waveforms

Wouter Van De Pontseele
Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Plane 0: Induction

Plane 1: Induction

Plane 2: Collection
MICROBOOONE DATA EVENT

Colour ~ Deposited charge

Plane 0: Induction

Plane 1: Induction

Plane 2: Collection

Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Incoming neutrino

Time
Wires
MICROBOONE DATA EVENT

Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Plane 0: Induction

Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Electromagnetic Shower

Plane 1: Induction

Run 5906, Subrun 74, Event 3710
MicroBooNE Data

Proton Track

Plane 2: Collection

Wouter Van De Pontseele
BACK TO REALITY: EVENTS CONTAIN A LOT OF COSMIC CHARGE DEPOSITS

Run 1463 Event 28. August 15th 2015 10:37
MicroBooNE is a surface detector.

- 5 kHz cosmic muon rate.
- Approximately 24 muons per triggered event

→ Cosmic activity is the dominant background!
MICROBOOНЕ DETECTOR SUBSYSTEMS

TPC
Cosmic muons produce tracks which are automatically reconstructed.

PMT
32 PMT's record the light emitted by ionised argon due to cosmic activity with nanosecond precision.

Cosmic Ray Tagger
MicroBooNE is equipped with a scintillator based cosmic tagger system that has a coverage of 85%.
MICROBOOONE DETECTOR SUBSYSTEMS

Fast simple signals from the photo-multiplier (PMT) system and the cosmic ray taggers in combination with detailed but slow energy deposits from the TPC.

→ Cosmic studies benefit from using all parts of MicroBooNE!
Goals and Results

- Independent **rate measurement** using the different subsystems.
- Track reconstruction **resolution in the TPC**.
- Modelling the distortion of the electric field due to build-up of slow drifting ions (**Space-charge**).
- Validation of different **input flux models** for CORSIKA.
- Data **stability** testing over different **data-taking** periods.
We are able to reconstruct muon tracks entering the TPC with an efficiency above 98% and a purity of $\approx 98\%$.

Reconstruction resolution: $O(\text{cm})$ for the length and below 1° for the angles.

\rightarrow Fully automated track reconstruction in LArTPC with high granularity.
• Evaluations with both CRY and CORSIKA, the latter being our default.
• Evaluations using different CORSIKA input models; Found good agreement using proton primaries

The intensity of primary nucleons is approximated by:

\[\Phi(E) = 1.8 \times 10^4 (E[\text{GeV}])^{-2.7} \text{ nucleons/m}^2 \text{s sr GeV} \]

Measured muon flux at Fermilab, integrated over energy and solid angle:

\[129.5 \pm 0.5 \text{ (stat.)} ^{+4.0}_{-2.8} \text{ (syst.) Hz/m}^2 \]
Agreement between CORSIKA configuration, TPC and PMT measurement. Measurement using the CRT in progress.
THANK YOU!
& Questions