

The instrumented decay tunnel of the ENUBET neutrino beam

ENUBET = Enhanced NeUtrino Beams from kaon Tagging

A narrow-band beam for the precision era of ν physics:

Knowledge ν_e/ν_μ flux at O(1%)

Leptonic CP violation

Ultra Compact Modules (UCM);

 Plastic scintillator tiles arranged in doublets forming inner rings;

Allows π^0 rejection

Monitor positrons from K_{e3} decays from e^+ counting;

- Sampling calorimeter;
- Three radial layers;
- Longitudinal segmentation;

Allows $e^+/\pi^+/\mu$ separation

Baseline for the calorimeter: shashlick technique

Shashlik: WLS
fibers
perpendicularly
crossing the
absorber/
scintillator tiles

The use of SiPMs embedded in the calorimeter allows a very compact configuration with minimal dead volumes

SiPM irradiation tests @ LNL and beam tests @ CERN:

SiPM PCB

- Dark current after breakdown increases by more than two order of magnitudes @ $\sim 10^{11}~n/cm^2$;
- MIP signals remain well separated from dark noise peak if SiPM cell size and scintillator thickness are properly chosen;

Shashlik prototypes tested @ CERN: response to e^+ , π^+ and MIP

- Energy resolution: $\sim 17 \% / \sqrt{E} (GeV)$;
- Good agreement with MC simulation;

Overcome SiPM irradiation ageing: lateral readout option

Sampling calorimeter with lateral WLS fibers for light collection

Large SiPM area $(4 \times 4 \ cm^2)$ for the readout of 10 WLS

SiPM are not immersed in the hadronic shower: reduced neutron damage, better accessibility, possibility of replacement, better reproducibility of WLS-SiPM optical coupling;

Shielding at the back of calorimetric layers:

Preliminary results from tests @ CERN:

response to e^+ , π^+ and MIP

Integrated t0-layer in lateral readout prototype

Recognition of ENUBET in the Neutrino Platform as ENUBET/NP06: renovated East Area for the final validation of the demonstrator

First studies for the development of a muon monitoring system

Use the tagger to constrain the high energy ν_μ spectrum from K^+ decays (in progress), and detectors (μ -stations) following the hadron dump to constrain the low energy ν_μ spectrum from π^+ decays

First preliminary simulation tests

Studies in progress:

- Determination of the μ detector technology;
- Studies of the systematics;

Checkout more @ http://enubet.pd.infn.it & Poster-ID E17

