The instrumented decay tunnel of the ENUBET neutrino beam ### **ENUBET** = Enhanced NeUtrino Beams from kaon Tagging A narrow-band beam for the precision era of ν physics: Knowledge ν_e/ν_μ flux at O(1%) Leptonic CP violation Ultra Compact Modules (UCM); Plastic scintillator tiles arranged in doublets forming inner rings; Allows π^0 rejection Monitor positrons from K_{e3} decays from e^+ counting; - Sampling calorimeter; - Three radial layers; - Longitudinal segmentation; Allows $e^+/\pi^+/\mu$ separation ## Baseline for the calorimeter: shashlick technique Shashlik: WLS fibers perpendicularly crossing the absorber/ scintillator tiles The use of SiPMs embedded in the calorimeter allows a very compact configuration with minimal dead volumes #### SiPM irradiation tests @ LNL and beam tests @ CERN: SiPM PCB - Dark current after breakdown increases by more than two order of magnitudes @ $\sim 10^{11}~n/cm^2$; - MIP signals remain well separated from dark noise peak if SiPM cell size and scintillator thickness are properly chosen; # Shashlik prototypes tested @ CERN: response to e^+ , π^+ and MIP - Energy resolution: $\sim 17 \% / \sqrt{E} (GeV)$; - Good agreement with MC simulation; Overcome SiPM irradiation ageing: lateral readout option Sampling calorimeter with lateral WLS fibers for light collection Large SiPM area $(4 \times 4 \ cm^2)$ for the readout of 10 WLS SiPM are not immersed in the hadronic shower: reduced neutron damage, better accessibility, possibility of replacement, better reproducibility of WLS-SiPM optical coupling; #### Shielding at the back of calorimetric layers: #### Preliminary results from tests @ CERN: response to e^+ , π^+ and MIP Integrated t0-layer in lateral readout prototype Recognition of ENUBET in the Neutrino Platform as ENUBET/NP06: renovated East Area for the final validation of the demonstrator # First studies for the development of a muon monitoring system Use the tagger to constrain the high energy ν_μ spectrum from K^+ decays (in progress), and detectors (μ -stations) following the hadron dump to constrain the low energy ν_μ spectrum from π^+ decays #### First preliminary simulation tests #### **Studies in progress:** - Determination of the μ detector technology; - Studies of the systematics; Checkout more @ http://enubet.pd.infn.it & Poster-ID E17