

Outline

- Introduction
- Measurement setup
- Test of hexagonal and square tiles with different readout sites
- Gain and dark current measurements of new S14160 MPPCs
- Read out of ATLAS tiles with MPPCs
- Conclusions and outlook

Introduction

- The SiD ECAL uses hexagonal silicon pixels motivated by higher pixel yields from a wafer
- A hexagon is a better approximation to a circle than a square,
 - As for squares larger arrays can be constructed with hexagons without gaps
 - But at the module edges, we have to deal with half hexagons
- For EM showers, we expect a better performance for hexagonal cells than for square cells since the first ring around a center tile consists of 6 not 8 tiles and the second ring consists of 12 rather than 16 tiles
 - Better S/N since the energy of less cells is summed
- We started to test the performance of hexagonal tiles with 3 different readout schemes wrt to that of square tiles
- We started to test the 4th generation MPPCs from Hamamatsu, which should have lower noise and afterpulsing
- We started to check upon the performance of ATLAS TileCal
 tiles with SiPM readout → interesting for future hadron collider hadron calorimeters
 G. Eigen, CHEF19, Fukuoka, Japan, November 25-29

3

Measurement Setup

trigger

tile

- Work in black box
- Use MIP of electrons from ⁹⁰Sr source
- MPPC is loosely coupled to tile
- Trigger on second tile
- Record 50k waveforms

Signal Recording

Tile Layouts

- Our machine shop produced 9 hexagonal-shaped tiles (a=1.86 cm) and 9 square-shape tiles (3 cm × 3 cm), which have the same area, thickness 3 mm
- Scintillator material is from St Gobain (Bicron) BC404
- We use 3 different readout schemes
 Via Y11 fiber inserted into a groove located in the middle of the tile
 - Via a dimple in the center
 - Via coupling to a corner/side

	BC-400	BC-404	BC-408	BC-412	BC-416
Light Output, % Anthracene	65	68	64	60	38
Rise Time, ns	0.9	0.7	0.9	1	-
Decay Time, ns	2.4	1.8	2.1	3.3	4
Pulse Width, FWHM, ns	2.7	2.2	~2.5	4.2	5.3
Light Attenuation Length, cm*	160	140	210	210	210
Wavelength of Max. Emission, nm	423	408	425	434	434
No. of H Atoms per cm ³ , (x10 ²²)	5.23	5.21	5.23	5.23	5.25
No. of C Atoms per cm ³ , (x10 ²²)	4.74	4.74	4.74	4.74	4.73
Ratio H:C Atoms	1.103	1.1	1.104	1.104	1.11
No. of Electrons per cm ³ , (x10 ²³)	3.37	3.37	3.37	3.37	3.37
Principal uses/applications	General purpose	Fast counting	TOF counters, large area	Large area	Large area economy

Tile Wrapping and Readout

- Tiles on top and bottom are wrapped with 2 layers of Tyvec paper
- Use 2 layers of Teflon tape on sides
- Readout hole in Tyvec is 1 mm
- Green fiber is Y11 from Kuraray
- For readout we use the Hamamatsu MPPC S13360-3025 as well as 4th generation MPPCs: S14160-1315, S14160-1310, S14160-3015 and S14160-3010

S13360-3025

G. Eigen, CHEF19, Fukuoka, Japan, November 25-29

S14160-1315

Comparison of the 3 Readout Schemes

Uniformity Measurement of Fiber Readout

Uniformity Measurement of Center-mount MPPC

Uniformity Measurement of Side-mount MPPC

Mean value of fitted Gaussian for each position is divided by the light yield measured at center position

- Note the increase in the number of PE's in the right most bin near MPPC
- Excluding point near MPPC, average relative light yield is (94.6±1.5)%
- Uniformity within $\sim \pm 7\%$ except for value at the readout side
- Position at readout position is enhanced by 1.48 wrt average value

Uniformity of Square Tile with Fiber Readout

- Mean value of fitted Gaussian for each position is divided by the light yield measured at the center position
- Most probable light yield at the center position (pe)_{most probable} =19.4 pe
- Average relative light yield is (78.2±1.2)% determined from upper and lower row
- Uniformity is within ±7%
- Right-hand side of middle row is ~15-20% higher

G. Eigen, CHEF19, Fukuo

Uniformity of Square Tile with MPPC on Side

- Mean value of fitted Gaussian for each position is divided by the light yield measured at the center position
- Most probable light yield at the center position (pe)_{most probable} =7.91 pe
- Average relative light yield is (86.7±3.2)%
- Tile is uniform within ±13% (cause is probably non homogeneous wrapping)

G. Eigen, CHEF19, Ful

Properties of 4th Generation MPPCs S14160

We received 8 MPPCs from Hamamatsu (2 of each type)

MPPC	S14160-1310	S14160-3010	S14160-1315	S14160-3015
Sens. area	1.3 x 1.3 mm ²	3 x 3 mm ²	1.3 x 1.3 mm ²	3 x 3 mm ²
Pixel size	10 μ	10 μ	15 μ	15 μ
# pixels	16675	90000	7296	40000
V _b	~43.4	43.1	41.6	42.5
Dark rate	120 kHz	700 kHz	120 kHz	700 kHz
gain	1.8x10 ⁵	1.8x10 ⁵	3.6x10 ⁵	3.6x10 ⁵
C at Vop	100 pF	530 pF	100 pF	530 pF

S14160-13yy

S14160-30yy

Photodetection efficiency is highest for green light from Y11 fiber

- BC404 has maximum wavelength at 408 nm
- Photon detection efficiency of 10 μm pixel is about half of that of the 15 μm pixel sensors

Experience with S14160 MPPCs

- Waveform of S14160-1315 sensor at V_b=43.33 V and T=25°C
- Clearly see individual photoelectrons
- Solder joints are rather touchy in 3 S14160-13 sensors, solder pads detached from sensor
- Our electronics engineer could fix two S14160-1310 sensors
- Waveform looks similar as that of the unbroken sensor s14160-1315

Gain versus Reverse Bias Voltage

- Use ⁹⁰Sr source on hexagonal tile read out with fiber and an S14160 sensor
- Determine peak of photoelectron distribution
- Determine gain from the distance between two adjacent photoelectron peaks
- Gain can be fitted with linear dependence, slope = 0.002/V
- Deviations from line may come from small temperature fluctuations

- Slope corresponds to 0.002/V
- At nominal V_b=43.4 V: G=1.8x10⁵
- Breakdown voltage V_{break} =38.5 V

ATLAS Tile Uniformity Measurements

- At each location extract photoelectron (PE) spectra by taking minimum of each of 50,000 triggered waveforms and plotting spectra that are fitted to a Landau distribution after subtracting the position of the pedestal

Uniformity of ATLAS Small Tiles

- Plot the most probable value of the fitted Landau distribution normalized to the value at the center position
- Note that the most probable value increases closer to where the fiber is located (i.e. see more PE peaks on average)
- MIP peak is around 3-4 photoelectrons

Uniformity of ATLAS Small Tiles

- Plot the most probable value of the fitted Landau distribution normalized to the value at the center position
- Note that the most probable value increases closer to where the fiber is located (i.e. see more PE peaks on average)
- MIP peak is around 3-4 photoelectrons
- Note that the hole in the tile has a large affect on the light collection

G. Eigen, CHEF19, Fukuoka, Japan, November 25-29

Conclusions and Outlook

Performance of hexagonal tiles looks promising

- Readout with fiber gives highest light yield, uniformity within 10% except near sensor
- Tiles with center/side readout need larger dimple, uniformity within 6-7% except near sensor
- Performance of square tiles with fiber (side) readout looks fine
 - Uniformity is within ±7% (±13%) except for position close to MPPC
 - Need sufficiently large dimple for center and side readout
- First test of 4th generation MPPCs, 14160 series
 - Gain of S14160 sensors is linear with V_b between 40 and 50 V
 - Dark current increases rapidly with V_b
 - Both fixed S14160-1310 MPPCs work fine
- Different-size ATLAS tiles with present fiber couplings can be read out with MPPCs
 MIP peak produces enough photoelectrons
- Do more performance studies of hexagonal/square tiles (wrapping, RO location)
- Do further studies with new MPPCs (afterpulsing, linearity, noise, T dependence)

Backup

Slides

Dark Current vs Reverse Bias Voltage

Determine dark current from integral of waveform without the source (I-V curves) and plot rms

Fit is second-order polynomial

