
Physics	object	performance	of	the		
FCC-hh	calorimeter	system	

Clement	Helsens,	CERN-EP	(on	behalf	of	the	FCC	Calorimeter	group)		
CHEF	2019,	Fukuoka	
Based	on	FCC	CDRs	Vol3	Eur.Phys.J.ST	228	(2019)	and	ongoing	work	
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Expectation	from	hadron	future	collider	
Guaranteed	deliverables	
•  Study	Higgs	and	top-quark	properMes	and	exploraMon	of	EWSB	phenomena		

with	unmatchable	precision	and	sensiMvity	
	
ExploraMon	potenMal	(New	machines	are	build	to	make	discoveries!)	
•  Mass	reach	enhanced	by	factor	√s/14TeV	(5-7	at	100TeV)	

•  StaMsMcs	enhanced		by	several	orders	of	magnitude	for	possible	BSM	seen	at	HL-LHC	
•  Benefit	from	both	direct	(large	Q2)	and	indirect	precision	probes	
	
Could	provide	firm	answers	to	quesMons	like	
•  Is	the	SM	dynamics	all	there	at	the	TeV	scale?	
•  Is	there	a	TeV-Scale	soluMon	the	hierarchy	problem?	
•  Is	DM	a	thermal	WIMPS?	
•  Was	the	cosmological	EW	phase	transiMon	1st	order?	Cross-over?	
•  Could	baryogenesis	have	taken	place	during	EW	phase	transiMon?	
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Environment	and	detector	requirements	
@100TeV	FCC-hh	
•  The	radiaMon	level	increase	mostly	driven	by	the	jump	in	instantaneous	luminosity	

•  pp	cross-secMon	from	14	to	100TeV	only	grows	by	a	factor	2	

•  10	Mmes	more	fluence	compared	with	HL-LHC	(x100	wrt	to	LHC)		

•  Need	radiaMon	hard	detectors	

	

•  More	forward	physics	->	larger	acceptance	
•  Precision	momentum	spectroscopy	and	energy	measurements	up	to	|η|<4	

•  Tracking	and	calorimetry	up	to	|η|<6	(at	10cm	of	beam	line	at	18m	of	IP)	

	

•  More	energeMc	parMcles		
•  colored	hadronic	resonances	up	to	40TeV	->	Full	containment	of	jets	up	to	20TeV	

•  Resonances	decaying	to	boosted	objects	(top,	bosons)	->	need	very	high	granularity	to	resolve	such	sub-structure	 5	
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•  Low	pT	physics	produced	at	threshold	(EWK,	Higgs,	top)	
is	more	forward:	
	
•  Need	larger	η	coverage	(up	to	|η|~6)	compared	to	LHC	
•  And	radiaMon	hard	detectors	(especially	FWD)	

25
/1
1/
19
	Physics	req.	for	calorimeters	(low	pT)	



FC
C-
hh

	C
al
o	
pe

rf
or
m
an
ce
	

7	

•  Low	pT	physics	produced	at	threshold	(EWK,	Higgs,	top)	
is	more	forward:	
	
•  Need	larger	η	coverage	(up	to	|η|~6)	compared	to	LHC	
•  And	radiaMon	hard	detectors	(especially	FWD)	

•  Need	excellent	energy	and	angular	resoluMon	at	low	
energy	for	precision	physics	(ex:	HH->bbγγ)	
	
•  Small	noise	and	stochasMc	terms	
•  Robustness	vs	pile-up	(noise)	
•  π0	rejecMon	capabiliMes	
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•  Low	pT	physics	produced	at	threshold	(EWK,	Higgs,	top)	
is	more	forward:	
	
•  Need	larger	η	coverage	(up	to	|η|~6)	compared	to	LHC	
•  And	radiaMon	hard	detectors	(especially	FWD)	

•  Need	excellent	energy	and	angular	resoluMon	at	low	
energy	for	precision	physics	(ex:	HH->bbγγ)	
	
•  Small	noise	and	stochasMc	terms	
•  Robustness	vs	pile-up	(noise)	
•  π0	rejecMon	capabiliMes	

•  Need	excellent	lateral	and	longitudinal	granularity	
	
•  Make	ParMcle-Flow	algorithm	more	effecMve	
•  PoinMng	capabiliMes	(needed	to	trigger	on	HH->bbγγ)	
•  Helps	with	pile-up	rejecMon		

CMS	HG-Cal	
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•  The	FCC-hh	has	sensiMvity	for	(colored)	hadronic	resonances	up	to	m	≈	40	TeV,	hence	require:		
•  Full	containment	for	jets	with	pT	=	20	TeV	→	small	constant	term		
•  Limit	punch	through,	and	helps	muon	ID	
•  Assess	requirements	correctly	drives	detector	size	⇒	magnet	⇒	cost		

11What is a o(10) TeV jet made of?

Caterina Doglioni – Higgs and BSM @ 100 TeV workshop – CERN 2015

Add link to mini-workshop for calo in February

T.	Carli	et	al	
2016	JINST	11	
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ΔR≅2m/pT	

•  The	FCC-hh	has	sensiMvity	for	(colored)	hadronic	resonances	up	to	m	≈	40	TeV,	hence	require:		
•  Full	containment	for	jets	with	pT	=	20	TeV	→	small	constant	term		
•  Limit	punch	through,	and	helps	muon	ID	
•  Assess	requirements	correctly	drives	detector	size	⇒	magnet	⇒	cost		

	
	
	
	
	
	
•  The	FCC-hh	has	sensiMvity	for	boosted	resonances	(ex:	Z’	→	}	or	RSG	→	WW)	up	to	m	≈	20	TeV		

•  W	jet	with	pT	=	10	TeV	→	ΔR	=	0.02	(typical	E-Cal	cell	size	@	LHC)		
•  Need	very	high	granularity	to	resolve	such	substructure	(tracking	can	achieve	such	separaMon)	

•  target:	4x	be}er	granularity	wrt	ATLAS/CMS	detectors		
•  Has	calorimetry	the	capability	to	resolve	such	objects?		
•  Granularity	translate	to	actual	separaMon	power?		
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Single	photon	and	Higgs		
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•  Large	impact	of	in	Mme	PU	on	the	noise	term		
•  Out	of	the	box	with	no	sophisMcated	technics	for	removal!!	(opMmized	the	sliding	window	reco)	
•  Severely	degrades	mɣɣ	resoluMon	
•  Improving	clustering,	not	sliding	windows	may	help	
•  Impacts	Higgs	self-coupling	precision	by	δκλ	≈	1%		
•  Some	thought	needed	(tracking,	Mming	informaMon	can	help?)		



•  ReconstrucMon	algorithms	uses:		
•  Calorimeter	cells,	topological	cluster	
•  Includes	electronics/pile-up	noise		
•  Deep	Neural	Network	energy	reconstrucMon	

13	
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•  No	sophisMcated	PU	removal	for	topo-clusters,	thus	large	impact	on	performance	
•  DNN	outperforms	by	a	lot!	
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Single	pion	performance	

FC
C-
hh

	C
al
o	
pe

rf
or
m
an
ce
	

25
/1
1/
19
	



•  No	B-field	as	the	acceptance	will	be	significantly	reduced	w/o	parMcle	flow	
•  Those	results	shows	best	achievable	with	simple	calibraMon	
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Jet	performance	
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•  With	200-1000PU	
•  Will	get	large	amount	of	fake-jets	from	PU	combinatorics	
•  Need	both	longitudinal/lateral	segmentaMon	for	PU	idenMficaMon	
•  SimplisMc	observables	show	possible	handles,	but	are	pessimisMc…		
•  In	reality	tracking	and	parMcle	flow	will	help	a	lot	
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Jet	pile-up	identiHication	
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•  Calorimeter	standalone,	and	without	B	field	
•  Performance	good	up	to	1	TeV	

•  Far	from	having	explored	all	possibiliMes:	
•  ParMcle-Flow	tracks	and	B	field	(decrease	local	occupancy)	will	improve		
•  Machine	Learning	techniques	will	help	a	lot	(train	on	3D	shower	image)	
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Jet	sub-structure	

W/Z->qq	
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Jet	sub-structure	
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•  At	higher	pT	starts	to	be	more	challenging		
as	light	jets	looks	similar	to	top	for	mSD	



Outline	

1.  ExpectaMons	/	Requirements	

		

2.  Object	performances	

	

3.  Physics	consideraMons	

25
/1
1/
19
	

FC
C-
hh

	C
al
o	
pe

rf
or
m
an
ce
	

19	



Q*->jj	

20	
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Q*/Z’->jj	

•  Q*	model		
•  Strongly	coupled	
•  Wide,	large	cross	secMon	
	

•  Z’	model	
•  Same	benchmark	as	Z’	->	leptons	
•  Narrow,	small	cross	secMon	
	

•  Analysis	selecMon	
•  pT(j1)	and	pT(j2)>3TeV		
•  Y*=|yj1-yj2|/2	<	1.5	

•  UncertainMes	
•  50%	uncertainty	on	the	Di-jet	normalizaMon	

21	
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5σ	discovery	for	Q*	(wide):	
•  15TeV	a�er	1	day	(1�-1)	
•  36TeV	a�er	10	years	@	baseline	
•  40TeV	a�er	full	operaMon	25	years	

5σ	discovery	for	Z’	(narrow):	
•  <15TeV	a�er	10	years	@	baseline	
•  19TeV	a�er	full	operaMon	25	years	
•  Increasing	the	calorimeter	constant	term	has	a	

large	impact	on	the	discovery	potenMal	

Q*	 Z’	
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Z’->tt	
GRS->WW	

23	

FC
C-
hh

	C
al
o	
pe

rf
or
m
an
ce
	

25
/1
1/
19
	

W->jj	



Boosted	top/W	
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ΔR≅2m/pT	

Top-quark/W-boson	
LHC:	pT	~	1TeV	→ΔR=0.5/0.15		
FCC:	pT	~	10	TeV	→	ΔR	=	0.05/0.015		
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Multivariate	discriminant	
•  MVA	discriminant	to	disentangle	overwhelming	

QCD	jets	from	boosted	
W/tops	

•  Need	to	further	validate	this	in	full	simulaMon,	but	
work	in	ongoing,	but	it	seems	that	the	top	tagging	
performance	can	be	reproduced	in	full	simulaMon	
with	calorimeter	granularity	only	
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•  Reference	detector	for	FCC-hh	experiments	with	high	granularity	
•  Demonstrated	that	it	can	be	operated	in	such	difficult	condiMons	

•  In	no	pile-up	environment	achieved	the	goal	resoluMon:		
•  Electrons/photons:	8%/√E	⊕	0.2%	
•  Pions:	50%/√E	⊕	2.2%	(40%	with	DL)	
•  Jets	(without	magneMc	field):	70%/√E	⊕	2.6%		

•  Pile-Up:	a	challenge	for	FCC-hh	environment		
•  Valid	for	any	studied	detector	opMon	
•  OpMmizaMon	of	reconstrucMon	procedures	necessary		
•  Need	help	from	tracking	and	Mming		
•  1000	PU	hosMle	environment	also	for	calorimetry	(energy	resoluMon),	but	DNN	is	outstanding	

•  Longitudinal/lateral	segmentaMon	is	suitable	for	
•  PU	jet	IdenMficaMon	ParMcle-Flow	algorithms		
•  Angular	and	energy	resoluMon	
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Backup	
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FCC-hh	Scope	
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•  FCC-hh	Target:		
•  √s	=100TeV		
•  100	km	long	
•  Needs	16T	magnets		
	

•  Direct	search	for	New	Physics:		
•  Direct	prod.	of	heavy	resonances	up	to	m	≈	40	TeV		
•  Stops	up	to	m	≈	10TeV	
	

•  Precision	SM	physics	(complementary	to	e+e-):		
•  Higgs	self-coupling	(	Δλ/λ	≈	4%	)	
•  Higgs	rare	decays	
•  EWK,	Top	physics	in	new	extreme	dynamical	regimes		
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Key	parameters	
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•  Luminosity:		
•  Baseline:		5	1034	cm-2	s-1		

•  UlMmate:	30	1034	cm-2	s-1		

•  O(30	ab-1)	~25	years	of	operaMons		
	
•  RadiaMon	levels:		
•  pp	cross-secMon	from	14	TeV	→	100	TeV	only	grows	by	factor	2		
•  radiaMon	level	increase	mostly	driven	by	increase	in	inst.	luminosity		
	

•  10	Mmes	more	fluence	compared	to	HL-LHC	(x100	wrt	to	LHC)		
•  For	calorimetry		

•  1	MeV-neq	fluence	≈	4	1015(14)cm-2	in	the	Barrel	for	E-Cal	(H-Cal)		
•  1	MeV-neq	fluence	≈	2	1016	cm-2	in	the	End-Caps		
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FCC-hh	detector	
H-Cal	forward	
∆η	=	0.05,	∆φ	=	0.05,	∼6	layers		
Goal	σE/E=100%/√E	⊕	10%	

E-Cal	forward	
∆η	=	0.05,	∆φ	=	0.05,	∼6	layers		
Goal	σE/E=30%/√E	⊕	1%	

H-Cal	end-cap	
∆η	=	0.025,	∆φ	=	0.025,	∼6	layers		
Goal	σE/E=50%/√E	⊕	3%	

E-Cal	end-cap	
∆η	=	0.01,	∆φ	=	0.01,	∼6	layers		
Goal	σE/E=10%/√E	⊕	0.7%	

H-Cal	barrel,	extended	barrel	
∆η	=	0.025,	∆φ	=	0.025,	∼10/8	layers		
Goal	σE/E=50-60%/√E	⊕	3%	

E-Cal	barrel	
∆η	=	0.01,	∆φ	=	0.009,	∼6	layers		
Goal	σE/E=10%/√E	⊕	0.7%	
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•  Granularity	
•  Much	more	granular		

than	ATLAS	(×10)	

•  ∆η	=	0.025,	∆φ	=	0.025	
•  10	longitudinal	layers	

	

•  High	longitudinal	and		lateral	segmentaMon	possible	with	SiPMs	

•  Mechanical	structure	feasible,	assembly	study	done	

•  First	test	of	scinMllator	Mles	started	

32	
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E-Cal	performance	
•  PosiMon	resoluMon		
•  essenMal	to	combine	tracks	and		

calorimeter	clusters	in	high	PU	

	

•  SegmentaMon	
•  Fine	φ	in	the	1st	layer		

(ΔηxΔφ≈	0.0025	x	0.02)	

•  Fine	η	in	other	layers	(Δη=	0.01)	crucial		
for	π0	rejecMon	(H->γγ)	

•  Excellent	results	obtained	with	MVA	and		
up	to	15	variables	

•  Deep	Neural	Network	based	analysis		
show	similar	results	
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Radiations	
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Discovery	tt	degrading	b-tag	efHiciency	

36	

High	efficiencies	(εb	>	60%)	for	corresponding	low	
mis-idenMficaMon	probability	(εu,d,s	<	1%)	from	light	
jets	have	to	be	achieved	up	to	pT	=	5	TeV.		
	
For	example,	searches	for	heavy	resonances	
decaying	to	hadronic	}	pairs	heavily	rely	on	
efficient	b-tagging	performance	at	such	energies.		
	
The	discovery	reach	for	a	specific	Zʹ	model	
assuming	several	scenarios	for	b-jet	idenMficaMon	
at	very	large	pT	are	considered	
->	Nominal	efficiency	(1-pT/15)*85%	
->	scenarios	1,2,	3	correspond	to	reducMon	of	the	
slope	by	a	factor	25%,	33%	and	50%.		
	
As	expected	the	discovery	reach	strongly	depends	
on	the	b-tagging	performances.	
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Jet	sub-structure	
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•  More	plots	from	Coralie	
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Jet	sub-structure	

FC
C-
hh

	C
al
o	
pe

rf
or
m
an
ce
	

25
/1
1/
19
	

32τ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

3−10

2−10

1−10

1

cells full granularity

cells

cells full granularity

cells

QCD
top

FCC-hh simulation (Geant4)
=0〉µ〈B=4T, 

| < 0.5η10TeV jets @ 0 < |
, R = 0.2Tanti-k

32τ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

no
rm

3−10

2−10

1−10

1

cluster

split cluster

cluster

split cluster

QCD
top

FCC-hh simulation (Geant4)
=0〉µ〈B=4T, 

| < 0.5η10TeV jets @ 0 < |
, R = 0.2Tanti-k


