

Physics object performance of the FCC-hh calorimeter system

Clement Helsens, CERN-EP (on behalf of the FCC Calorimeter group) CHEF 2019, Fukuoka Based on FCC CDRs Vol3 **Eur.Phys.J.ST 228 (2019)** and ongoing work 25/11/19

1. Expectations / Requirements

2. Object performances

3. Physics considerations

1. Expectations / Requirements

2. Object performances

3. Physics considerations

FCC-hh Calo performance

Expectation from hadron future collider

Guaranteed deliverables

• Study Higgs and top-quark properties and exploration of EWSB phenomena with unmatchable precision and sensitivity

Exploration potential (New machines are build to make discoveries!)

- Mass reach enhanced by factor vs/14TeV (5-7 at 100TeV)
 - Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC
- Benefit from both direct (large Q²) and indirect precision probes

Could provide firm answers to questions like

- Is the SM dynamics all there at the TeV scale?
- Is there a TeV-Scale solution the hierarchy problem?
- Is DM a thermal WIMPS?
- Was the cosmological EW phase transition 1st order? Cross-over?
- Could baryogenesis have taken place during EW phase transition?

Environment and detector requirements

@100TeV FCC-hh

- The radiation level increase mostly driven by the jump in instantaneous luminosity
 - pp cross-section from 14 to 100TeV only grows by a factor 2
 - 10 times more fluence compared with HL-LHC (x100 wrt to LHC)
 - Need radiation hard detectors
- More forward physics -> larger acceptance
 - Precision momentum spectroscopy and energy measurements up to $|\eta| < 4$
 - Tracking and calorimetry up to $|\eta| < 6$ (at 10cm of beam line at 18m of IP)
- More energetic particles
 - colored hadronic resonances up to 40TeV -> Full containment of jets up to 20TeV
 - Resonances decaying to boosted objects (top, bosons) -> need very high granularity to resolve such sub-structure

Physics req. for calorimeters (low p_T)

- Low p_T physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger η coverage (up to $|\eta|^{-6}$) compared to LHC
 - And radiation hard detectors (especially FWD)

Physics req. for calorimeters (low p_T)

- Low p_T physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger η coverage (up to $|\eta|^{6}$) compared to LHC
 - And radiation hard detectors (especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH->bbγγ)
 - Small noise and stochastic terms
 - Robustness vs pile-up (noise)
 - π⁰ rejection capabilities

FCC-hh Calo performance

25/11/19

Physics req. for calorimeters (low p_T)

- Low p_T physics produced at threshold (EWK, Higgs, top) is more forward:
 - Need larger n coverage (up to $|n|^{-6}$) compared to LHC
 - And radiation hard detectors (especially FWD)
- Need excellent energy and angular resolution at low energy for precision physics (ex: HH->bbyy)
 - Small noise and stochastic terms
 - Robustness vs pile-up (noise)
 - π^0 rejection capabilities
- Need excellent lateral and longitudinal granularity
 - Make Particle-Flow algorithm more effective
 - Pointing capabilities (needed to trigger on HH->bbyy)
 - Helps with pile-up rejection

Physics req. for calorimeters (high p_T)

- The FCC-hh has sensitivity for (colored) hadronic resonances up to $m \approx 40$ TeV, hence require:
 - Full containment for jets with $p_{\tau} = 20 \text{ TeV} \rightarrow \text{small constant term}$ ۲
 - Limit punch through, and helps muon ID
 - Assess requirements correctly drives detector size \Rightarrow magnet \Rightarrow cost

 $\geq 11 \lambda_{\rm I}$ with E-Cal+H-Cal seems good enough

Physics req. for calorimeters (high p_T)

- The FCC-hh has sensitivity for (colored) hadronic resonances up to m ≈ 40 TeV, hence require:
 - Full containment for jets with $p_T = 20 \text{ TeV} \rightarrow \text{small constant term}$
 - Limit punch through, and helps muon ID
 - Assess requirements correctly drives detector size \Rightarrow magnet \Rightarrow cost

- The FCC-hh has sensitivity for boosted resonances (ex: $Z' \rightarrow tt$ or RSG \rightarrow WW) up to m ≈ 20 TeV
 - W jet with $p_T = 10 \text{ TeV} \rightarrow \Delta R = 0.02$ (typical E-Cal cell size @ LHC)
 - Need very high granularity to resolve such substructure (tracking can achieve such separation)
 - target: 4x better granularity wrt ATLAS/CMS detectors
 - Has calorimetry the capability to resolve such objects?
 - Granularity translate to actual separation power?

1. Expectations / Requirements

2. Object performances

3. Physics considerations

Single photon and Higgs

- Large impact of in time PU on the noise term
 - Out of the box with no sophisticated technics for removal!! (optimized the sliding window reco)
 - Severely degrades m_{yy} resolution
 - Improving clustering, not sliding windows may help
 - Impacts Higgs self-coupling precision by $\delta \kappa_\lambda \approx 1\%$
 - Some thought needed (tracking, timing information can help?)

Reconstruction

- <u>Reconstruction algorithms uses:</u>
 - Calorimeter cells, topological cluster
 - Includes electronics/pile-up noise
 - Deep Neural Network energy reconstruction

Single pion performance

- No sophisticated PU removal for topo-clusters, thus large impact on performance
- DNN outperforms by a lot!

FCC-hh Calo performance

Jet performance

- No B-field as the acceptance will be significantly reduced w/o particle flow
- Those results shows best achievable with simple calibration

Jet pile-up identification

- With 200-1000PU
 - Will get large amount of fake-jets from PU combinatorics
 - Need both longitudinal/lateral segmentation for PU identification
 - Simplistic observables show possible handles, but are pessimistic...
 - In reality tracking and particle flow will help a lot

- <u>Calorimeter standalone, and without B field</u>
 - Performance good up to 1 TeV
- Far from having explored all possibilities:
 - Particle-Flow tracks and B field (decrease local occupancy) will improve
 - Machine Learning techniques will help a lot (train on 3D shower image)

FCC-hh Calo performance

25/11/19

Jet sub-structure

• At higher p_T starts to be more challenging as light jets looks similar to top for m_{SD}

1. Expectations / Requirements

2. Object performances

3. Physics considerations

20]

Q*/Z'->jj

Q* model

- Strongly coupled
- Wide, large cross section •

Z' model

- Same benchmark as Z' -> leptons
- Narrow, small cross section

Analysis selection

- $p_T(j_1)$ and $p_T(j_2)>3TeV$
- $Y^* = |y_{i1} y_{i2}|/2 < 1.5$

Uncertainties

50% uncertainty on the Di-jet normalization

<u>5σ discovery for Q* (wide):</u>

- 15TeV after 1 day (1fb⁻¹)
- 36TeV after 10 years @ baseline
- 40TeV after full operation 25 years

5σ discovery for Z' (narrow):

- <15TeV after 10 years @ baseline
- 19TeV after full operation 25 years
- Increasing the calorimeter constant term has a large impact on the discovery potential

25/11/19

25/11/19

Multivariate discriminant

- MVA discriminant to disentangle overwhelming QCD jets from boosted W/tops
- Need to further validate this in full simulation, but work in ongoing, but it seems that the top tagging performance can be reproduced in full simulation with calorimeter granularity only

W tagger		top tagger			
variable	weight	variable	weight		
$ au_3$ (track jet, R=0.2)	0.12	$ au_1$ (track jet, R=0.2)	0.21		
m_{SD} (track jet, R=0.2)	0.11	m_{SD} (track jet, R=0.2)	0.17		
$ au_{31}$ (track jet, R=0.2)	0.10	$ au_{31}$ (track jet, R=0.2)	0.11		
$E_F(n=5,lpha=0.05)$	0.09	$ au_2$ (track jet, R=0.2)	0.10		
$E_F(n=4,lpha=0.05)$	0.09	$ au_3$ (track jet, R=0.2)	0.09		
$E_F(n=1,lpha=0.05)$	0.08	$m_{SD}~({ m track~jet,~R=0.8})$	0.09		
$E_F(n=2,lpha=0.05)$	0.07	m_{SD} (track jet, R=0.4)	0.09		
$E_F(n=3,lpha=0.05)$	0.06	$ au_{32}$ (track jet, R=0.2)	0.08		
$ au_{21}$ (track jet, R=0.2)	0.06	$ au_{21}$ (track jet, R=0.2)	0.06		
$m_{SD}~({ m track~jet,~R=0.8})$	0.06				
m_{SD} (track jet, R=0.4)	0.06				
$ au_1 \ ({ m track \ jet, R=0.2})$	0.05				
$ au_2$ (track jet, R=0.2)	0.04				
$ au_{32} \ ({ m track \ jet}, { m R}{=}0.2)$	0.02				

Summary

- Reference detector for FCC-hh experiments with high granularity
 - Demonstrated that it can be operated in such difficult conditions
- In no pile-up environment achieved the goal resolution:

 - Pions: 50%/VE ⊕ 2.2% (40% with DL)
 - Jets (without magnetic field): 70%/VE ⊕ 2.6%
- Pile-Up: a challenge for FCC-hh environment
 - Valid for any studied detector option
 - Optimization of reconstruction procedures necessary
 - Need help from tracking and timing
 - 1000 PU hostile environment also for calorimetry (energy resolution), but DNN is outstanding
- Longitudinal/lateral segmentation is suitable for
 - PU jet Identification Particle-Flow algorithms
 - Angular and energy resolution

Backup

27]

FCC-hh Scope

- FCC-hh Target:
 - √s =100TeV
 - 100 km long
 - Needs 16T magnets
- **Direct search for New Physics:**
 - Direct prod. of heavy resonances up to $m \approx 40 \text{ TeV}$
 - Stops up to $m \approx 10 \text{TeV}$
- Precision SM physics (complementary to e⁺e⁻):
 - Higgs self-coupling ($\Delta\lambda/\lambda \approx 4\%$)
 - Higgs rare decays
 - EWK, Top physics in new extreme dynamical regimes

Key parameters

- <u>Luminosity</u>:
 - Baseline: 5 10³⁴ cm⁻² s⁻¹
 - Ultimate: 30 10³⁴ cm⁻² s⁻¹
 - O(30 ab⁻¹) ~25 years of operations
- Radiation levels:

parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14	14	27	100
circumference	km	26.7	26.7	26.7	97.8
peak \mathcal{L}	$10^{34} { m cm}^{-2} { m s}^{-1}$	1	5	25	30
bunch spacing	ns	25	25	25	25
number of bunches		2808	2808	2808	10600
goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel}	mb	85	85	91	108
σ_{tot}	mb	111	111	126	153
BC rate	MHz	31.6	31.6	31.6	32.5
peak pp collision rate	GHz	0.85	4.25	22.8	32.4
peak av. PU events/BC		27	135	721	997
rms luminous region σ_z	mm	45	57	57	49
line PU density	$\rm mm^{-1}$	0.2	0.9	5	8.1
time PU density	$\rm ps^{-1}$	0.1	0.28	1.51	2.43
$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
charged tracks per collision N_{ch}		95	95	108	130
Rate of charged tracks	GHz	76	380	2500	4160
$\langle p_T \rangle$	GeV/c	0.6	0.6	0.7	0.76
bending radius for $< p_T >$ at B=4 T	cm	50	50	58	63
number of pp collisions	10^{16}	2.6	25	90	324
charged part. flux at 2.5 cm est.(FLUKA)	$ m GHzcm^{-2}$	0.2	0.8	4.6	8 (12)
1MeV-neq fluence at 2.5 cm est.(FLUKA)	$10^{16}{ m cm^{-2}}$	0.5	4.5	19	80 (60)
total ionizing dose at 2.5 cm est.(FLUKA)	MGy	1.5	15	60	254(400)
$dE/d\eta _{\eta=5}$	GeV	.			670
$dP/d\eta _{n=5}$	kW	.			3.4

- pp cross-section from 14 TeV \rightarrow 100 TeV only grows by factor 2
- radiation level increase mostly driven by increase in inst. luminosity
- <u>10 times more fluence compared to HL-LHC (x100 wrt to LHC)</u>
 - For calorimetry
 - 1 MeV-neq fluence \approx 4 10¹⁵⁽¹⁴⁾cm⁻² in the Barrel for E-Cal (H-Cal)
 - 1 MeV-neq fluence \approx 2 10¹⁶ cm⁻² in the End-Caps

25/11/19

Tile calorimeter

- Granularity
 - Much more granular . than ATLAS (×10)
 - $\Delta \eta = 0.025, \Delta \phi = 0.025$
 - 10 longitudinal layers

- High longitudinal and lateral segmentation possible with SiPMs
- Mechanical structure feasible, assembly study done
- First test of scintillator tiles started

E-Cal performance

- Position resolution
 - essential to combine tracks and calorimeter clusters in high PU

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

- <u>Segmentation</u>
 - Fine φ in the 1st layer
 (ΔηxΔφ≈ 0.0025 x 0.02)
 - Fine η in other layers ($\Delta \eta$ = 0.01) crucial for π^0 rejection (H-> $\gamma\gamma$)
 - Excellent results obtained with MVA and up to 15 variables
 - Deep Neural Network based analysis show similar results

Radiations

-CC-hh Calo performance

36

Discovery tt degrading b-tag efficiency

High efficiencies ($\varepsilon_{b} > 60\%$) for corresponding low mis-identification probability ($\varepsilon_{u,d,s} < 1\%$) from light jets have to be achieved up to $p_{T} = 5$ TeV.

For example, searches for heavy resonances decaying to hadronic tt pairs heavily rely on efficient b-tagging performance at such energies.

The discovery reach for a specific Z' model assuming several scenarios for b-jet identification at very large p_T are considered -> Nominal efficiency $(1-p_T/15)*85\%$ -> scenarios 1,2, 3 correspond to reduction of the slope by a factor 25%, 33% and 50%.

As expected the discovery reach strongly depends on the b-tagging performances.

Jet sub-structure

Jet sub-structure

• More plots from Coralie

