

Performance of CMS High Granularity Calorimeter prototypes in testbeam experiments

Shubham Pandey, Seema Sharma (IISER PUNE) Artur Lobanov (LLR / Ecole polytechnique / IN2P3) on behalf of the CMS collaboration

CHEF2019 conference, Kyushu University, Fukuoka, Japan 26 November 2019

Outline

- Introduction
- HGCAL Beam Test Setup in October 2018
- Signal reconstruction and calibration
- Physics performance
 - Electromagnetic Showers
 - Hadronic showers
- Summary

CMS High Granularity CAL orimeter

To sustain the harsh environment of HL-LHC run, forward region of CMS will be replaced by High Granularity Calorimeter (HGCAL).

Active Elements:

- Electromagnetic part of HGCAL:
 - CE-E : Si sensors as active layers, Cu/CuW/ Pb absorber
 - $_{\odot}$ 28 layers, 25 X₀ & ~1.3 λ
- Hadronic part of HGCAL:
 - **CE-H** : **Si** & **SiPM-on-scintillator** as active layers, steel absorbers
 - 22 layers, ~7.2 λ

Key-parameters:

- HGCAL covers $1.5 < |\eta| < 3.0$
- Full system maintained at -30°C
- ~640 m² of Si sensors & ~370 m² of scintillators
- 6.1M Si channels

For more details, see the talk Status and plans for the CMS HGCAL upgrade project by Felix Sefkow

HGCAL prototype 6" Silicon sensor module

Beam test setup in October 2018

First large-scale test of more than 90 HGCAL modules in October 2018 data-taking at CERN. The setup was exposed to $e^+ \& \pi$ beam of energies ranging from 20 to 300 GeV and 200 GeV μ beams.

Reconstruction and calibration

The results are presented based on only CE-E and CE-H sections of the beam test setup.

For more details on AHCAL, don't miss the talk :

The CALICE AHCAL - a highly granular SiPM-on-tile hadron calorimeter prototype by Katja Kruger

Pedestal stability across data taking period

• Pedestal runs were recorded when there is no beam in the detector during the full duration of experiment. Complementary: using muon data for pedestals.

CMS Preliminary

Average pedestal values over the period of 2 weeks of beam test experiment are within expected measurement uncertainties for the CE-E prototype and the CE-H prototype Si readout channels.

MIP calibration using muon beam

- Silicon sensor channels are calibrated in terms of MIPs using 200 GeV µ beam.
- MIP calibration constants are extracted by fitting a Landau distribution with convoluted Gaussian distribution over the energy spectrum.

- Signal over noise ratio is found to be ~ 7 for most calibrated 300 µm Silicon cells.
- Overall ~ 85% channels from CE-E & CE-H prototype were calibrated (using muons and parasitic runs).

Gain Intercalibration

- SKIROC2-CMS ASIC provides different gain stages (High Gain/Low Gain) and Time over Threshold (ToT) to allow a wide dynamic range for energy measurements.
- To ensure a linear response over a large dynamic range, gain intercalibration is performed.

Sufficient overlap in ranges to allow a reliable gain inter-calibration coefficients obtained through the fits of these correlation measurements.

Physics Performance (using 20-300 GeV e⁺) CE-H-Si CE-E ~26X0 Example event display October 2018 TB run 646 - event 2 250 GeV e+

EM showers: Longitudinal Shower Shapes

The GEANT4 FTFP_BERT_EMN physics list closely models the longitudinal shower shapes measured in the data using e⁺ momenta raging from 20-300 GeV.

EM showers: transverse shower shape

12

EM showers: linearity & energy resolution

- Energy response of e^+ as a function of beam energy is linear within $\pm 0.5\%$.
- Both the resolution and linearity of response measured in data are well described by the simulation.

Hadron shower start point

- TB setup was exposed to pion beam of energy ranging between 20 GeV to 300 GeV.
 - The shower start point is the depth of the first hadronic interaction point.
 - Important input to combine energies deposited in calorimeter compartments of different absorbers.
 - A preliminary shower start finder algorithm based on hit multiplicity in consecutive layers is implemented.
 - As expected, the number of showers surviving without a hadron interaction falls exponentially as a function of pion interaction length.

Hadron showers: linearity & energy resolution

- Pion energy is reconstructed using energies deposited in CE-E & CE-H (excluding AHCAL).
- Energies measured in CE-E & CE-H are combined using a software compensation technique minimizing the resolution for different pion energies.

Average response & response measured in data are well described by simulation based on FTFP-BERT_EMM list. 16

Hadron showers in CE-E

- Understand energy sharing among compartments with different absorbers to get the best resolution, and for measuring longitudinal shower profiles.
- An out-of-box of energies measured in terms of number of MIPs suggests QGSP-BERT modelling the data better than FTFP based lists for high energy pions.

Summary

- First large scale beam test was performed in October 2018 at the H2 beamline at CERN.
 - More than 90 modules were incorporated in HGCAL TB setup.
- Pedestal and noise values remained stable over a period of two weeks of data taking.
- More than 6 Million events were recorded using e+, π and μ beam.
 - Performance of electrons and pions has been studied in terms of response and resolution and is found to be in good agreement with simulation.
 - Analysis of EM showers is almost complete, and is expected to be submitted for publication in coming months.
 - Performance measurement of hadron showers will follow a few months after.
- For the timing studies using test beam data, see the talk "Precision timing calorimetry with the CMS High Granularity Calorimeter" by Artur Lobanov.

Backup

Timing resolution

- Timing is measured with Time Of Arrival (ToA)
- MCPs from MTD were used as reference which was placed just in front of HGCAL TB setup
 - Single MCP resolution reaching 20 ps floor
- TOA calibration using data from asynchronous beam
 - Time-walk derived with time reference (e.g. MCP)

TOA resolution close to SKIROC2cms spec. of 50 ps