ECAL Trigger performance in Run 2 and improvements for Run 3

Davide Valsecchi for the CMS collaboration

Università degli Studi e INFN di Milano-Bicocca, CERN

CHEF 2019 25 November 2019

Outline

1. Introduction

2. ECAL trigger in Run 2:

- Detector evolution and trigger calibration
- Anomalous signals suppression
- Overall performance

3. Improvements for Run 3:

- Amplitude estimation re-optimisation
- o Performance on data and MC
- Further developments

4. Conclusions

CMS detector at LHC and L1 trigger

- The Compact Muon Solenoid is a general purpose detector at Large Hadron Collider (CERN)
 - Tracking detectors, muon chambers,
 electromagnetic and hadronic
 calorimeters with a 3.8 T magnetic field
- The LHC collides trains of bunches of protons at 40 MHZ in the center of the detector at 13 TeV of center of mass energy.
- The CMS L1 trigger uses fast algorithms in custom electronics to select 100 kHz of interesting events out of 40 MHz of LHC collisions with a latency of 3.8 μs

ECAL detector

- The **CMS ECAL** is an homogenous and hermetic calorimeter made of **75,848** scintillating lead tungstate (PbWO₄) **crystals**, located inside the CMS solenoid.
- It is divided in **ECAL Barrel EB** (61,200 crystals) up to $|\eta|$ < 1.48, and **ECAL Endcaps EE** (7,324 crystals each) reaching $|\eta|$ < 3, read out by Avalanche Photo Diodes (APDs) in the EB and Vacuum Photo Triodes (VPTs) in EE.
- ECAL purpose is to measure precisely the energies of the electrons and photons, as well as the EM fraction of jets

ECAL Trigger Primitives Generation (TPG)

- ECAL provides transverse energy sums (trigger primitives or TPs) of groups of crystals (25 in EB, 5-15 in EE) to L1 trigger to form e/γ and jet candidates at each bunch crossing (BX)
- Amplitude reconstruction and BX energy assignment performed on-detector by ASIC chips by applying a digital filter (configurable weights) on the digitized pulse for each strip (5 crystals line)
- The ECAL pulse extends over several 25ns samples: readout window 10 BX, TP weights on 5 samples both before and after the peak
- A **Strip Fine-Grained Veto Bit** (sFGVB) is computed to flag **anomalous signals** (*spikes*) registered by the electronics.

	w1	w2	w3	w4	w5
EE	-0.656250	-0.515625	0.250000	0.515625	0.406250
EB	-0.562500	-0.546875	0.250000	0.484375	0.375000

Current sets of weights for EB and EE

APD anomalous signals (spikes)

- Large signal in a **single crystal** coming from **direct ionization** by hadrons of APD in the barrel.
- They would saturate the L1 rate at high ET if not identified and removed

Event display with ECAL spike

LHC Run 2

- During **Run 2** of LHC (2015-2018), ~ 160 fb⁻¹ of collisions has been collected.
- The instantaneous luminosity has increased steadily during Run 2, as well as the mean number of pileup interactions (PU) up to < PU > ~ 50 in 2018.
- These have been **challenging data taking conditions** for ECAL:
 - Larger crystal transparency loss compared to Run 1
 - Increase of noise due to ageing of APD photodetectors
 - More challenging pulse reconstruction with increasing out-of-time PU (OOT-PU)

Twice-weekly crystal response corrections needed to maintain stable trigger efficiency over time

ECAL Trigger calibrations

Regular **updates** to trigger primitive **conditions** and **calibrations** needed to maintain performance during Run 2.

- Spikes are removed at L1 trigger looking for isolated energy hits above a certain threshold
- Frequent **pedestal updates** needed to reduce as much as possible the fake rate at L1.

E _⊤ threshold	Online pedestals	Updated pedestals	
20 GeV	13%	11%	
30 GeV	22%	19%	
40 GeV	27%	21%	
50 GeV	38%	32%	

Run 2 performance

- During Run 2, the operational efficiency of ECAL has been better than 99 %.
- Thanks to stable ECAL and HCAL calibrations and detector performance, CMS maintained excellent e/y trigger efficiency at L1 during Run 2.

LHC Run 3

- Run 3 of the LHC from 2021 to 2023
- An integrated luminosity of 300 fb⁻¹ is expected \rightarrow Larger loss of transparency at high η
- < PU > ~ 55-60 is expected → Larger out-of-time PU pulse contamination

ECAL Trigger generation optimisation for Run 3

- Current ECAL TPG weights (1 set for EB, 1 set for EE)
 computed from test beam (2003) data using undamaged
 crystals
- No more optimal especially at high η because of radiation-induced changes to pulse shapes:
 - Large bias in energy estimate
- The re-optimisation of weights is proceeding by steps:
 - Recompute weights using pulse shapes measured from data during 2018
 - Increase weights granularity: optimised for each
 strip separately instead of whole EB/EE

TPs bias spread and average improves a lot

Fractional bias =
$$< E_{tp}/E_{true} > -1$$

Fractional spread = $\frac{\text{RMS}\left(E_{tp}/E_{true}\right)}{< E_{tp}/E_{true} >}$

Weights optimisation for out-of-time PU

- OOT PU from LHC collisions trains **distort** the ECAL pulse
- Developed **standalone MC** to simulate **OOT PU effects:**
 - simulate PU pulses → optimize weights for distorted pulse → extract best weights using many events
- The optimisation depends on the relative magnitude of signal amplitude and PU level
- PU optimised weights can further reduce TP energy bias and spread
- Several **sets of weights** have been compared:
 - o Current: existing weights (1 set EB, 1 EE)
 - PU0 new avg: updated average weights (1 set EB, 1 EE)
 - o **PU0**: updated per-strip weights: using only signal pulse shape
 - o PU50 S2: updated per-strip weights optimised for PU=50 and E_T=2 GeV signals
 - \circ PU50 S30: updated per-strip weights optimised for PU=50 and E_T=30 GeV signals

New weights performance evaluation

- The performance of the new sets of weights is evaluated in terms of bias and resolution of the TPs
- Studied bias and resolution of TPs by **BX position** along the train and by **signal E_T bins**
- Used events from 2017 and 2018 CMS Data with different LHC filling schemes:
 - The pulse distortion depends on the **position of the signal** within the LHC bunch train
 - Different LHC schema have different effects on TPs
 - o 8b4e scheme, with continuously varying OOT PU, is most challenging for ECAL TPs
- Improving the weights by optimising for PU will improve the average behaviour, but cannot account for pulse-to-pulse and BX-to-BX distorsion

TPs performance by BX position

- There is a **strong bunch position dependence** to the amplitude bias intrinsic to the method
- Using PU optimised weights improves the TP resolution and reduces variations along the LHC train

TPs performance by strip E_T

- There is a **strong** E_T **dependence** to the amplitude bias and resolution, especially at low energy TPs.
- There are measurable resolution improvements observed when using PU optimised weights

Further developments

- Not all the FENIX features have been used:
 - o 6 weights available: 5 used until now
 - 2 parallel filter + peak finder blocks available: 1 used until now
- Potential improvements are under study
 - Pulse timing estimation:
 - potential to improve spike rejection at L1 with a simple timing cut
 - not yet understood if possible with current electronics
 - The interplay of the 2 sets of filters is being explored to understand what is possible in hardware
- We are testing new features directly on the test bench ECAL
 DAO electronics in 904 Lab @CERN

Offline simulation of best case scenario

Conclusions

• ECAL Trigger Run 2 performance:

- Challenging data taking conditions: high luminosity and PU
- Followed **detector evolution** to maintain stable trigger efficiencies and rates
- Minimum downtime and excellent e/γ Level-1 trigger efficiency

• Improvements for Run 3:

- Plan to deploy optimised amplitude weights to account for larger radiation damage and higher PU
- Testing new features to improve OOT PU discrimination and spike rejection:
 - Tests ongoing on ECAL electronics
 - The potential improvements will be quantified using data and MC before deciding on final implementation

Backup

ECAL Geometry in CMS detector

Fig. 1.2: Schematic view of one quadrant of the calorimetry and tracking system.

ECAL on-detector electronics

Peak finder, assign BX

X 5

Amplitude weights derivation

- Amplitude weights can be derived for a given waveform
- This is sone by a χ^2 minimization which takes in a waveform and noise correlation matrix. CMSNOTE2006/037

Equation for pedestal subtracting weights, assuming no noise correlation between samples

$$W_{A,i} = \frac{f_i - \frac{\sum_{j}^{N} f_j}{N}}{\sum_{j}^{N} f_j^2 - \frac{(\sum_{j}^{N})^2}{N}}$$

	w1	w2	w3	w4	w5
EE	-0.656250	-0.515625	0.250000	0.515625	0.406250
EB	-0.562500	-0.546875	0.250000	0.484375	0.375000

Current weights

PU optimised weights

PU=60

PU=100

- PU=200

3

-10

PU=80

PU=150

Weight position

Timing weights for spikes discrimination

- FENIX weights can be optimized to **estimate timing** of the pulses
- Spikes and EM shower pulses have small timing difference
- Apply a timing cut would have a great impact on spike discrimination
- Not yet understood if possible to implement this strategy in FENIX

Data / MC comparison, bias by BX

Comparison of the performance of new weights on TP bias along the train, in standalone MC and data

Data / MC comparison, spread by BX

Comparison of the performance of new weights on TP resolution along the train in standalone MC and data

