Report on the 2019's SiW-ECAL beam test @DESY and the COB performance

A. Irles, LAL-CNRS/IN2P3 on behalf of the SiW-ECAL CHEF2019 29/11/2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

Introduction

Towards a real detector: (some) challenges

Long slabs : up to ~15 ASU (~3m)

- Complex object: mechanics and electronics.
- Electrical prototype built and tested (see J. Kunath's talk)
- Spatial constraints: front-end (see R. Poeschl's + this talk):
 - limited space between layers and between ECAL and AHCAL
 - Control & Readout electronics at the extremity of the slab.
 - One electronic card for controlling and reading~10⁴ channels
- > Spatial constraints: ultra thin PCB (this talk):
 - Very compact design: 20 cm for 20-30 active layers + 24X0 tungsten → very limited space for inactive material (PCB, electronic components)

The SiW ECAL in the ILD Detector

E-CAL Services

Reminder: R&D on PCB for SiW-ECAL

- BGA packaged chips
 - Space for external decoupling capacitors
 - Symmetric stacking will improve flatness,
 - good for wafer gluing
 - Optimal shielding of signal traces

- PCB with naked die
 - Thin board (~1.2mm)
 - Planarity is an issue
 - Challenging for PCB producers
 - Little space for extra components
- See later.

Ultra thin PCB: Chip On Board

- ILD tight spatial constrains: Total space for ASICs and PCB 1.8mm (was 1.2mm since ~2007)
- > Chip-On-Board proposal:
 - Naked ASICs wirebonded.
 - Cavities (~250um) for the ASICs

- LAL & OMEGA collaboration with ITAEC/SKKU (Sungkyunkwan University, Suwon – Korea) and EOS company for the PCB production.
- > 10 FEV11_COB produced.
 - 1.2mm thickness → 9 layers PCB !
 - **Good Planarity** (metrology made in LAL) and electrical response.
 - No extra components (i.e. decoupling capacitances, etc)
- 4 boards wirebonded at CERN bonding lab. Also In contact with CAPTINNOV Platform.
 - Extensively tested at LAL before gluing a full size sensor to them

Test Beam 2019

- > Two weeks of Beam Test at TB24. From 24th June to 7th July.
- Presence from

ICEPP

Plus support & hardware from

"The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)".

TB setup

- > Devices under test:
 - **5 FEV13Jp** fully equipped with 4 Si wafers each. All of 650um except one slab with 320um. Interfaced with the "old" front end.
 - 2 COB (called a and c) boards with one wafer each (500um) and the new SL-Board
 - 2 FEV12 boards with one wafer each (500um) and the new SL-Board
 - All boards equipped with skiroc2a ASICs
- First week: 5 FEV13Jp and 1 COB and 1 FEV12.
- Second week: full setup with 9 slabs.

.

4 SLB based slabs 5 DIF based slabs

FEV13s

TB setup

TB setup

- Flexible prototype stack able to hold the 9 slabs + 8 W plates of different thicknesses. All mounted in plastic plates. The box have two frontal panels (one for DIF and one for SL-Board)
 - One with 4 short HV cables + 4 short LV cables for SLB and the kapton PCB for DAQ.
 - One with 5 HV cables + 5 SMBV5 LV cables + 5 DIF LV cables + 5 HDMI cables for DAQ.

SLB based slabs: gluing

- > Wafer gluing made at LPNHE.
 - One wafer per PCB.
- Last glued board received during the beam test.
- Current aspiration setup of the gluing robot and the current COB version are not fully compatible
 - in fact, the FEV12 also needs some manual work before starting the the process
- This was fixed by fabricating a simple aluminum (or even a 3D printed) mask to transport the vacuum from the pipes to the COB.
 - Very useful input for the next COB generation.

SLB based DAQ

- Impressive and very intuitive debugging + on site commissioning capabilities.
 - Online monitoring for all channels and SCAs.
 - Easy and human friendly environment: quick masking of channels, change of thresholds etc.
 - Automatic commissioning procedure possible (already there at the beam test but not extensively tested)
- At LAL, the boards were extensively tested before gluing the sensor.
- But the boards with glued sensors where commissioned to a working level just on site... in less than 30 minutes !!! (i.e. masking of channels, setting of thresholds etc).

COB performance General beam test results described in Y. Kato's talk.

COB-a: with and without extra capacitances

- > The COBs are equipped with zero extra components (i.e. no decoupling capacitances).
- FEV experience show that adding decoupling cap. between GND and the analogue power supply of the chip are mandatory to control the noise.

FEV 8-13 At least two cap (120 and 150uF) per chip

- > We compare the performance of one of the COBs w/ and w/o.
- Run 21003: COB_a "naked"
 - 3.6pF gain, DAC=300 and with same acq window (2ms, 10Hz)
- Run 21010: Cob_a with 4x150uF cap. Between AVDD and GND.
 - 3.6pF gain, DAC=300 and with same acq window (2ms, 10Hz)

Pedestal calculation

- > Analysis done after event filtering of fake signals.
- > Check the charge (HG) of non triggered cells.
- Pedestal = Mean (gauss fit)
- Width = Sigma (gauss fit)

Pedestal calculation: width

Irles, A. CHEF2019 Fukuoka | 29/11/2019

MIP calibration COB-c vs COB-a

Comparable spectrums for both boards

DE L'ACCÉLÉRATEUR

- > MIP spectrum integrating all cells in ASIC 2 (SLB systems) or ASIC 13 (FEV13 systems)
- Few noisy channels in the COB-a (peak at 0)
 - Improvable by optimizing the thresholds.

COB summary

- Gluing wafers is possible in a automatized way:
 - Good planarity of the boards !
- > Different Skiroc2a configurations tested with both COBs (gain, thresholds, etc)
 - Dedicated commissioning of the boards and of the new DAQ.
- Competitive results with BGA, after adding few decoupling capacitances
 - Similar number of masked channels.
 - Similar S/N
- > Next TB in March 2020
- > Lots of inputs for the next generation:
 - Adding space for decoupling capacitances in the PCB
 - Adapting the board to the automatic gluing robot.

ECAL events reconstruction

Some built events (preliminary)

32014 (MIPs, 3 GeV, only SLB in the reconstruction)

Some built events (preliminary)

Outlook: TB March 2020

Reminder: BGA based PCB

- 4 versions currently being operated: FEV10, 11, 12, 13.
- 7(+2) FEV10-11 used in 2017-2018 beam test campaign.
 - Using the previous front-end generation (SMB+DIF).
 - Being exported to the new ultra compact front-end electronics SL-Board (see R. Poeschl's talk)
- 2 FEV12 (minor changes w.r.t. FEV11) used in TB2019 with the new SL-Board system.

Reminder: BGA based PCB

- 4 versions currently being operated: FEV10, 11, 12, 13.
- 7(+2) FEV10-11 used in 2017-2018 beam test campaign.
 - Using the previous front-end generation (SMB+DIF).
 - Being exported to the new ultra compact front-end electronics SL-Board (see R. Poeschl's talk)
- 2 FEV12 (minor changes w.r.t. FEV11) used in TB2019 with the new SL-Board system.

Reminder: BGA based PCB

- 4 versions currently being operated: FEV10, 11, 12, 13.
- Up to 5 FEV13 tested during 2019-2019.
 - Integrated with the old front end but using a new SMB (different connectivity)
 - Separation of analogue and digital PS layers.
 - Not directly compatible with new system...

Interfacing with SL-Board it is an ongoing activity: goal TB March 2020

- Needs some rewriting of FW.
- See R. Poeschl's talk

FEV13

Detector Interface (DIF)

Adapter card (SMB) for signal buffering + power regulation.

Plans for the TB March 2020

- Flexible box was able to handle up to 9 slabs (with tungsten) readout by the two generation of front ends:
 - Being modified to host up to **15 slabs + tungsten readout** with the SL-Board.
 - Front panel design reoptimized to facilitate cabling.
 - Air ventilation added.
- March 2020 TB: preparing new sets of modules using the new SL-Board.
 - 2 FEV12 already interfaced with SL-Board (+ 2 more?)
 - 2 COB already interfaced with SL-Board (+ 2 more?)
 - Up to 9 FEV11 that are (8 of them) currently interfaced to the "old" front end.
 - Up to 5 FEV13.
 - Between 15000 20000 calorimetric cells !
- > Upgraded SL-Board.

Excellent COB performance: competitive with the BGA boards but with minimal extra components !!

• Great step forward in the COB R&D with lots of inputs for the next COB generation design.

Very successful test of the new ultra compact DAQ based on the SL-Board.

Stay tuned for more developments & results soon.

Summary

Back-up slides

Technological prototype

Front end and VFE compactification with self-trigger ASIC (SKIROC2/2a) operated in power pulsing, higher granularity (5x5mm), compact modules

2010-2015

- Version 0 of techn. Prototype
- > 256 channels
- 1st power pulsing tests

2015-2018

Ultra thin PCB (COB) with wirebonded ASICs

2018-2019

- > 1024 chns per module in a 18x18xm surface
- > Ultra compact DAQ and PCBs

Irles, A. | CHEF2019 Fukuoka | 29/11/2019

Page 30

		CANAL AND A
2162	Sat Jul 6 14:55:53 2019	Taikan, Yu, Ludovic, Vincent, Adrian

End of the beam test, at 14.30. Start dismounting.

Run numbering:

run_CSXXX

```
C= configuration

1: only 5 FEV13 in the box
2: 5 FEV13 + 2 SLB (0 and 3) in the box
3: 5 FEV13 + 4 SLB in the box
4: 5 FEV13 + 4 SLB in the box + tungsten plates

S= system in the DAQ

0= only FEV13
1= only SLBs
2= all
```

Data location. In the EOS (CERN)

```
/eos/project/s/siw-ecal/TB2019-06/
```

Root files with built events for the common runs are to be prepared.

Some results: using tracks to align the modules

Julien Marchioro (Work in progress)

