

RESISTIVE PLATE CHAMBER DIGITISATION FOR HIGHLY GRANULAR CALORIMETER: SDHCAL

D. Boumediene, G. Grenier

CALICE Collaboration

CHEF 2019, Kyushu University, Fukuoka

Calorimeters for Particle Flow

- Particle Flow analysis is an optimal way to reconstruct final states in e+e- collisions especially with τ , missing energy and jets…
- A Particle Flow optimized hadronic calorimeter:
	- Has to be compact, fit in the magnet with negligible dead zones
	- * The active component must allow fine segmentation while keeping a reasonable intrinsic energy resolution

2

cf. talk by G. Grenier

The SDHCAL Calorimeter

-
-
-

 \ast

 \ast

- Simulation in 2 steps: \ast
	- Particle showers in the matter \rightarrow Geant-4 \ast
	- Simulation of the sensor response (RPC+ASIC) to Geant-4 hits \rightarrow Digitisation \ast
- Digitisation is challenging: *
	- High Granularity \rightarrow very sensitive to previous steps of simulation (Geant-4) *
	- Overlapping effects: Geant-4, avalanche, charge induction, ASIC \rightarrow Tuning with data \ast
	- Treat a large variety of particles: electromagnetic, hadronic, different energies **→ universal** \ast

Simulation of SDHCAL: Digitisation

To work with both isolated tracks and dense environment

4

Digitisation of sDHCAL

Initial avaianche Charges Induction, threshold Induced signal
Charges Distribution to Distribution to pads ionisation Initial avalanche induction, threshold induction, the shold

-
-

Test Beam data used to tuned digitiser parameters

- Use of the SDHCAL technological prototype: \ast
	- 48 Layers (48 GRPC) $*$
	- 1 m2 layers $*$
	- Gas mixture : 93%TFE ; 5%CO2 ; 2%SF6 *
	- HV about 6.9 kV à avalanche mode $*$
	- 9216 pads (1 cm2) per chamber $*$
	- 442k channels $*$
	- 144×48 ASICs: Hardroc 2 (64 ch) $*$
- Test beam campaigns: \ast
	- 2012, 2015, 2016, 2017, 2018 at CERN PS and SPS $*$
	- Exposed to hadron, muon, electron beams
- Use of power-pulsing:
	- Based on (S)PS spill structure \ast
	- First test of the power pulsing with such a detector \ast
- **D. Boumediene (LPC) CHEF 2019**

- Efficiency is measured with test beam muons \ast
- It reflects non homogeneities of the detector (RPCs, * ASICS)
- Quantifies the probability to reach the first threshold *

Inputs of the digitisation: efficiency

 Random selection of hits in the digitisation performed based on this efficiency

 \ast

- \ast
- \ast

Amplitude of avalanches depends on the angle of the incoming particle \ast Dependence of amplitude & efficiency measured using test beam muons with different angles. \ast

Inputs of the digitisation: angular dependence

13

Correction applied to hit amplitude function of Geant-4 step angle

JINST 11 (2016) 6 P06014

Charge collection

Charges are distributed to the pads * For each step (avalanche), fraction of charges seen by a pad is modelled with a sum of gaussian weights Charges accumulated on the Pads \ast Parameters tuned with muon test beam data

 10 mm

JINST 11 (2016) 6 P06014

Test beam data with electrons or pions are selected \ast

Comparison of simulation to Data

- Comparison of total number of hits \ast
	- Better for electrons than pions \ast
	- Better for high energy electrons w.r.t. low energy electrons $*$
	- Better for low energy pions w.r.t. high energy pions $*$
- Simulation combines Geant-4 and digitiser modelings \ast
- **D. Boumediene (LPC) CHEF 2019**

JINST 11 (2016) 6 P06014

* Screening effects due to overlap of avalanches treated with a cut-off \rightarrow possibility to apply a

Charge distribution modelled with gaussian weights \rightarrow possibility to use better distribution

\star Data tuning of the digitisation done with high energy muons, not function of energy deposit \rightarrow

Possible improvements of RPC digitisation

- non linear combination of avalanches
- functions
- possibility to add dependence to ionisation

- Monte Carle simulation of the avalanche:
	- Follow the evolution of the number of electrons and ions as a function of time and position
	- Take into account the changes in the $*$ magnetic field
- Simulation account for: *
	- Multiplication and absorption probabilities from Magboltz
	- **Diffusion** \ast
	- Space charge effect \ast
	- Induced charge*

Ingredient: amplification modelling

18

Ingredient: amplification modelling

- Monte Carle simulation of the avalanche:
	- Follow the evolution of the number of electrons and ions as a function of time and position
	- Take into account the changes in the magnetic field
- Simulation account for:
	- Multiplication and absorption probabilities *
	- Diffusion computed with Magboltz 9 \ast
	- Space charge effect
	- Induced charge \ast
- **D. Boumediene (LPC) CHEF 2019**

- Monte Carle simulation of the avalanche:
	- Follow the evolution of the number of electrons and ions as a function of time and position
	- Take into account the changes in the magnetic * field
- Simulation account for: \ast
	- Multiplication and absorption probabilities *
	- Diffusion \ast
	- Space charge effect: computing the influence of * the avalanche on the electric field at each position & time
	- Induced charge \ast

Ingredient: amplification modelling

Ingredient: amplification modelling

- Modeling of avalanches can be used for many purposes:
	- Hit by Hit modelling of the amplitude *
	- Hit by Hit Modeling of the efficiency \ast
	- Time resolution
	- Impact of magnetic fields
	- Impact of gap width non-uniformities
- Next slides it will be used only to correct from \ast amplitude and efficiency extrapolation from high energy muons (test beam) to other particles

Ingredient: amplification modeling

- * Test the amplitude of the avalanche and the efficiency (probability to have an avalanche)
- Clear saturation effect due to screening: no dependence to Ne>20 electrons
- Significant drop in amplitude (efficiency) if number of initial electrons < 20 (10)
- Use of 2D simulation of 32050 avalanches that required about 8500 CPU hours
- Amplitude and efficiency modelled with an analytical function that is injected in the digitiser
- * Number of ionisation charges not provided by Geant4: use deposited energy given by Geant4 and another simulation to get the number electrons

Ingredient: amplification modeling

- * Test the amplitude of the avalanche and the efficiency (probability to have an avalanche)
- Clear saturation effect due to screening: no dependence to Ne>20 electrons
- Significant drop in amplitude (efficiency) if number of initial electrons < 20 (10)
- Use of 2D simulation of 32050 avalanches that required about 8500 CPU hours
- Amplitude and efficiency modelled with an analytical function that is injected in the digitiser
- * Number of ionisation charges not provided by Geant4: use deposited energy given by Geant4 and another simulation to get the number electrons

Steps of the digitisations

- Check impact of the digitisation steps on Number hits (first \ast threshold)
- Digitization steps applied sequentially: \ast
	- One avalanche per G4 step \ast
	- Angular correction \ast
	- Ionisation correction *
	- Step position selection $*$
	- Step overlap suppression \ast
- Digitiser refined with Ionisation correction, does not explain * discrepancies
- Overlap correction & Charge distribution have a strong \ast impact on the number of hits and is a good candidate for refinement

Total number of hits

- -
	-
-
-

Data/MC comparisons

The SDHCAL Calorimeter

- Advantages of Resistive Plate Chambers: \ast
	- High efficiency, Low background, Linearity \rightarrow Energy resolution \ast
	- Well contained avalanches \rightarrow granularity, energy resolution *
	- Not expensive, robust, … \ast
	- Requires good modelling of the detector response \rightarrow simulation, digitisation
- **D. Boumediene (LPC) CHEF 2019**

 \ast

- When a charged particle crosses the gas gap, several gas molecules are ionized $*$
- Ions and electrons are then accelerated by the strong electric field $*$
- Avalanche is the result of multiple ionisations by electrons $*$
- $*$ amount of induced charge
- In avalanche mode, charges can be modelled by a Polya distribution $*$

Simulation of SDHCAL: Digitisation

Energy Reconstruction in SDHCAL

Use the number of Hits by thresholds to exploit the shower density \ast information

$$
E_{\text{reco}} = \alpha N_1 + \beta N_2 + \gamma N_3
$$

- with α , β , γ (Nhit) *
- Factors measured in test beam by minimizing *

Avalanche correction

Geant 4 output (step by step) Heed Avalanche efficiency modeling

/ 29.7 x

Probability that an avalanche does not vanish

Impact on linearity (π)

Energy reconstructed using the full simulated samples *

Using full simulation of pions from 7 to 70 GeV

Linearity is slightly improved but small effect

Input Parameters

JINST 11 (2016) 6 P06014

Dependence to ionisation

- Avalanche modeled with a data-tuned Polya (100 \ast GeV muons) for each Geant4 step that passes the selection \rightarrow assumes that MIPs are universal, i.e., same modelling applied for high and low energy charged particles crossing RPC
- sDHCAL is a calorimeter: a large spectrum of particle type/energies will induce a signal
- Can we use Geant4 step properties to refine the \ast polya modelling