

Four-dimensional Calorimeter to Discriminate Gammas from Neutrons for the KOTO Experiment

Mayu Osugi Osaka University @Calorimetry for the High Energy Frontier (CHEF2019)

Introduction

KOTO Experiment

Search for $K_L \rightarrow \pi^0 \nu \bar{\nu}$ at J-PARC

3

Csl Calorimeter

Csl Crystals

undoped Csl (50cm) # of crystals = 2716 2240 small (25×25 mm²) inner 476 large (50×50 mm²) outer

Excellent energy resolution

 $\sigma_E / E = 0.99\% + 1.74\% / \sqrt{E[\text{GeV}]}$

Readout with a PMT (rear side)

Hadron-cluster Background

radiation length ~ 2cm

Hadron-cluster Background

beam halo

	Single event	# of Hadron-	
	sensitivity	cluster BG	
2015 run	$1.3 imes 10^{-9}$	0.24	
2016~2018 run	$6.9 imes 10^{-10}$	0.02	Improving the existing cut
SM sensitivity	3×10 ⁻¹¹	0.5	

To reach the **SM** sensitivity,

we would suppress the background events further by <u>a factor of 10</u> by the CsI calorimeter upgrade

Hadron-cluster Background

radiation length ~ 2cm

Upstream

shallow distribution

Hadron-cluster Background

beam halo

interaction length ~ 40cm

Downstream

wide distribution

Distinguishable

using the **depth** of the interaction

Both-end Readout

Both-end Readout Upgrade

Readout

MPPC Installation

Csl from upstream

- Glued MPPCs on two rows in a day.
 (1 row : 12 ~ 60 crystals)
- Finished installation as scheduled.
 (2018 Oct. 1st ~ Nov. 15th)

MPPC Installation

~2018

2019~

Data Taking

Analysis

Gamma Sample

• $K_L \rightarrow 3\pi^0$ decay

A pair of gammas from a π^0 is used for the control sample reconstructed m_{K_r} distribution

Hadron-cluster Control Sample

► Used special run data as a neutron samples → Enhance the scattered neutron events by placing Al plate

ΔT Distribution

For the $K_L \rightarrow 3\pi^0$ decay, a pair of gammas from a π^0 is filled.

- Both gammas interact at upstream The secondary neutron tends to interact at downstream
- Use the <u>larger ΔT value</u> out of two clusters to suppress the hadron-cluster background.

ΔT Distribution

The hadron cluster background is suppressed to 1/45 with 90% signal efficiency

- We succeeded in the CsI calorimeter upgrade
- We evaluated the neutron rejection performance using the data taken in 2019
- The hadron-cluster background is suppressed down to 1/45 with 90% signal efficiency.