Study of Position Sensitive Silicon Detector (PSD)

Yuto Uesugi

Ryosuke Mori , Hiroaki Yamashiro , Taikan Suehara
Tamaki Yoshioka , Kiyotomo Kawagoe
Kyushu University
2019/11/26

CHEF2019, Calorimetry for the High Energy Frontier 2019

ILD (International Large Detector)

ILD (International Large Detector)

SiWECAL

- Si detection layer + W absorption layer
 →multilayer structure (20~30 layer)
- Sandwich ASIC and PCB between detection and absorption layer
- W → Electromagnetic shower
- Measure the energy of photons

- γ in jets mostly comes from π^0 via $\pi^0 \to 2\gamma$ decay
- For accuracy of π^0 reconstruction, direction of photons (angular resolution) is important information
- →high position resolution sensor

PSD (Position Sensitive Silicon Detector)

- Divide the signal in the resistive surface layer
- Hit position can be obtained as the gravity center of signal strengths of the electrodes

Ordinal silicon pad: charge drift to one pad

PSD: charge drift to P+ pad, then resistively split to electrodes

 With PSDs the position resolution can be improved with minimum increase in the acquisition channels

Previous study

• Irradiate the laser to PSD $(7 \times 7 \text{mm}^2)$ at 500 μ m intervals and get signals from electrodes at the four corners

$$X_{rec} = \frac{(\cosh 5 + \cosh) - (\cosh 7 + \cosh 8)}{\cosh 5 + \cosh 6 + \cosh 7 + \cosh 8}$$
$$Y_{rec} = \frac{(\cosh 6 + \cosh 8) - (\cosh 5 + \cosh 7)}{\cosh 5 + \cosh 6 + \cosh 7 + \cosh 8}$$

- Distortion at the edge
- Range is small $\rightarrow x$ axis: $0.33/7000 \mu m$ y axis: $0.34/7000 \mu m$
- Due to DAQ problem, not measured in the Test beam

ch8

ch6

ch5

New specification for PSD

Small dynamic range → Effect of readout impedance
 →Increased resistance of the resistive layer

New specification for PSD 1-a

- Cell size: $5.5 \times 5.5 \text{ mm}^2$
- Sensor thickness: 650 μm
- Three resistance values are available:
 10 times, 20 times, and 30 times the previous PSD
 → in order to optimize the resistance value of the resistance layer

PSD 1

 $\times 16 = 64ch$

New specification for PSD 1-b

- Cell size : $5.5 \times 5.5 \text{ mm}^2$
- Sensor thickness: 650 μm
- Three resistance values are available:
 10 times, 20 times, and 30 times the previous PSD
- Arrange low resistance lines at the cell edges to reduce distortion

PSD 1

× 16 = 64ch

Low resistance line

→1/4 times and 1/8
times the center 8
plane resistance

2019/11/26

CHEF2019, Calorimetry for the High Energy Frontier 2019

New specification for PSD 2

- Share adjacent cell pads
- Suppress increase in readout channel
- Multiple resistance values available
- If the number of read channels is the same, the pixel size can be reduced.
- Example: 16 × 16 cells PSD 1 \rightarrow cell size is 11mm (2 times) PSD 2 \rightarrow cell size is 5.86mm(16/15 times)

PSD 2

New specification for PSD 2

- Share adjacent cell pads
- Suppress increase in readout channel
- Multiple resistance values available
- If the number of read channels is the same, the pixel size can be reduced.
- Example: 16 × 16 cells
 PSD 1 → cell size is 11mm (2 times)
 PSD 2→ cell size is 5.86mm(16/15 times)

PSD 2

New daughter board and connector

 designed for connecting to the ASIC evaluation board through new connector

PCB with 4 layer

New board design of PSD 1

- New design daughter board using CADENCE allegro
 - ✓ PSD 1 PCB with hole → for irradiating the PSD with laser
 - ✓PSD 1 without hole → for measurement with radio isotope or for test beam

- Conductive bonding glue
- Dispenser made by Musashi Engineering (ML-808GX)
- High precision desktop operating type robot (SHOTMASTER400 Ω X)

Test beam measurement

- Place: ELPH (Tohoku University)
- 560 MeV positron beam
- Program
 - 1. Measure position resolution
 - 2. Measurement of position distortion

Setup

Test beam measurement

- So far, the noise was so loud that I couldn't see the signal with the self-trigger.
- Measured by triggering with PMT and scintillator
- The signal is probably visible.
- We will analyze from now on.

Summary and prospect

- For γ reconstruction, it is important for sensor to have high position resolution.
- PSD methods avoids an increase in the number of readout channels.
- Glued the sensor to the PCB
- Test beam measurement was performed at ELPH.
- To be done
 - ✓ Laser measurement
 - ✓ Analysis of test beam data
 - ✓ Production of PSDs designed to be mounted on ILC prototype

Back up

SKIROC analog

High voltage board design

- HV pad
- LEMO

Solder capacitor and LEMO connector

New board design of PSD 2

PSD 2
Two resistance
pattern
→total 30ch

- PSD2 without hole
- PSD2 PCB with hole

- It's right after applying conductive bonding glue.
- I left a weight for several days.

