LHC-ATLAS Phase-1 upgrade: Calibration and simulation of new trigger readout system of the Liquid Argon calorimeter

Gen Tateno

on behalf of ATLAS LAr Calorimeter collaboration

LAr calorimeter in LHC-ATLAS experiment

Phase-I upgrade

Luminosity is going to be high in the future. (Run 3, High Luminosity LHC) $\leftarrow 2.0 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ for Run3

The new trigger readout electronics

Electronics update schedule

Test pulsing system

47 cm

Calibration framework

*E*_T/bit consistency

$E_{\rm T}$ /bit consistency

Simulator development

There are another kind of constants used to calculate energy: optimal filter coefficients

$$E_{\mathrm{T}i} = R \sum_{j=i}^{i+3} a_{j} (s_{j} - p - b_{j})^{\mathsf{pedestal}} \text{ baseline}$$

OFCs depend on

- Noise ← determined by pedestal run
- Wave form ← determined by delay run
- LHC train structure
- Instantaneous luminosity

Need to be simulated

Input calibrated constants to the simulator

Train

What to take into account:

1. <u>Bunch structure</u>: ~10¹¹ protons form a bunch \rightarrow Bunches collide with each other

2. <u>Train structure</u>: Some bunches are empty in a periodic manner

- 3. <u>In-time pileup</u>: Low energy collision in a bunch that event originate
- 4. <u>Out-of-time pileup</u>: Low energy collision in a bunch that **no** event originate

Simulation scheme

Input energy in each cell assuming train structure, luminosity and hit sample

Simulation scheme

28.NOV.2019

Gen Tateno - CHEF2019

Summary & future tasks

- Confirmed consistency of E_T /bit in LAr calorimeter barrel C side
 - First time to check consistency of calibrated constants of the new on-detector board
 - Keep on measuring and validating calibration constants for cells in each region
- Simulation is needed to determine optimal filter coefficients
 - Confirmed the simulator works correctly
 - Process simulation assuming train structure, instantaneous luminosity and hit sample
 - Input wave form and calibration constant determined by real data
 - What to research:
 - Seek the optimal way to determine OFC (optimal filter coefficient)
 - Especially, we need to understand it for high η region whose wave forms are not well known for now
 - Estimate triggering rate by missing transverse energy ("MET")
 - Estimate triggering rate by object shape selection ("isolation")

Backup slides

Trigger readout by Super Cell

Improve object discrimination ability and control trigger rate

Run2 readout: Trigger Tower Run3 readout: Super Cell $\Delta \phi \approx 0.1$ $\Delta \eta = 0.025$ Back layer Phase-I Upgrade Middle layer (2019-2020) $\Delta \phi \approx 0.1$ Front layer Presampler $\Delta \eta \approx 0.1$ $\Delta \eta = 0.1$

Summed all the signals in this region so far

10 times higher granularity \rightarrow Discrimination between e/γ and hadron with difference of shower shape

Electronics update schedule

- Take out front-end board
- Update the front-end board on the ground
- Update the base plane of the front-end crate
- Maintenance of cooling pipes
- Reinstall front-end board
- Check the cooling water circulation system
- Install LTDB (digitizer board)
- Test the cable connection and the readout

LTDB Type	Channels	LTDB per region
EMB	290	64
EMEC Std	312	32
EMEC Spc 0	240	8
EMEC Spc 1	160	8
HEC	192	8
FCAL 0	192	2
FCAL 1	192	2
Total		124

Calibration pulse conversion

Equivalent circuit

Calibration scheme

Optimal filtering

To execute object discrimination by its shape, accurate energy and time in each cell are needed.

Algorithm to maximize signal-to-noise ratio

= Optimal Filter

