CHEF-2019

Calorimetry for the Ligh Energy Frontier CALORIMETERS: Today and for future projects

Using Machine Learning to Speed Up Calorimeter R&D

Fedor Ratnikov on behalf of the LHCb Calorimeter Upgrade group

LambdaLab, NRU Higher School of Economics Yandex School of Data Analysis

Inspiration

LHCb Upgrade 2 targets Run 5&6

 \rightarrow 1.5e34 cm⁻²c⁻² instantaneous **luminosity**

Inspiration

- Requires extensive R&D studies for U2 LHCb ECAL
	- ‣ module technologies
	- ‣ module configuration
	- ‣ readout properties
	- ‣ timing properties
	- installation geometry

‣ …

Optimization Cycle

Optimization Cycle

photons transport

 λ HSE LambdaLab

- ‣ direct beam and bench tests hard to directly include into simulation stack
- ‣ RECO algorithm needs tuning for the particular module technology/ geometry/configuration
- ‣ multi-parametric optimization may be expensive

ML in the Optimization Cycle

Machine Learning provides a set of tools and methods which allow effective fit of multi-dimensional data to non-parametric (generic) functions

- \triangleright allow quick turn over for the optimization cycle, when parameters are changed
- ‣ eliminate manual work for re-tuning simulation and reconstruction

ML model may be suboptimal comparing to "the best" solution

‣ however it catches main features, that is usually good enough to estimate physics performance and give feedback to ongoing detector R&D

I'll demonstrate how it can be used in LHCb U2 ECAL inspired environment

Fast SIM Response

Generate sample of calorimeter local responses to single particles with GEANT

Different approaches may be used then

- ‣ use generated sample as an object library and pick the best object in the optimization cycle using fast search techniques
- ‣ train a ML generative model which reproduce major features of original response matrix

Detector Response

EPJ Web of Conferences 214, 02034 (2019)

Spatial Reconstruction

Spatial Reconstruction

Train ML regressor (xgboost) to reconstruct coordinate

- ‣ non-parametric blindly trained ML regressor well reproduce manually-tuned parametrized reconstructor
- ‣ ML approach is agnostic to various calorimeter properties

 λ HSE **LambdaLat**

Pileup Mitigation with Timing

Performance strongly dependent on peculiar details of detector and electronics behaviors

- ‣ hard to reproduce in simulation
- Test beam results provide the latest and greatest information
	- ‣ evaluate important features
	- ‣ calibrate simulation on measured points

Data Used

Data obtained from the 30 GeV electron beam @DESY

- ‣ "output" module of the LHCb electromagnetic calorimeter
- ‣ each signal is 1024 impulse measurements 200 ps sampling (5GHz)
- ‣ artificial re-sampling to lower sampling rates

Time Resolution

Different regressors demonstrate similar result

- ‣ algorithm-agnostic estimation of the actual signal timing properties
- ‣ use xgboost for following studies

Effect of Background Contribution

At high pileup expect overlap of signals from different vertexes

- ‣ timing information may be used to mitigate pileup for individual calorimeter cell
	- ‣ as a part of signal processing at readout

for several cells of energy clusters

- ▶ at RECO level
- ‣ Consider individual cells in the following

Single vs Double Signal Discrimination

Combine two signals

- ‣ at given amplitude ratio
- \triangleright at given time shift

Sensitive to time shifts greater than 1 ns

[Fedor.Ratnikov@cern.ch](mailto:Fedor.Ratnikov@cern.ch?subject=) ML for Calorimetry R&D

Effect on Time Resolution

Well defined region of time resolution degradation

‣ appropriate mixture of 1-signal and 2-signal models should be used for model training

Effect on Amplitude Resolution

- How well could we extract signal amplitude on top of the background contribution?
	- ‣ sampling rate makes difference

17

Global Optimization

Many parameters to optimize simultaneously

‣ e.g. granularity distribution in LHCb U2 ECAL

Trade between physics performance and costs

- not obvious measure of success
- ‣ non-differentiable optimization loss function

Relatively long single iteration loop

ML provides special methods developed for such use cases

▶ e.g. Bayesian optimization

Summary

Building a bridge between calorimeter detector R&D and its affect on the ultimate physics performance is a time consuming work

Using standard ML approaches for classifications, regressions, domain adaptations, generations, optimization can automatize different steps of the optimization cycle

‣ this allows quick evaluation of physics performance for the particular calorimeter technology and configuration

speed up and steer R&D by quick feedback

facilitate global detector optimization

