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Inspiration

LHCb Upgrade 2 targets Run 5&6 

‣ 1.5e34 cm-2c-2 instantaneous 
luminosity 
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Inspiration

Requires extensive R&D studies for U2 LHCb ECAL 

‣ module technologies 

‣ module configuration  

‣ readout properties 

‣ timing properties 

‣ installation geometry 

‣ …
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Optimization Cycle
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Optimization Cycle

Bottlenecks: 

‣ calorimeter simulation is computationally intensive 

shower development 

photons transport 

‣ direct beam and bench tests hard to directly include into simulation 
stack 

‣ RECO algorithm needs tuning for the particular module technology/
geometry/configuration 

‣ multi-parametric optimization may be expensive
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ML in the Optimization Cycle
Machine Learning provides a set of tools and methods which 
allow effective fit of multi-dimensional data to non-parametric 
(generic) functions 
‣ allow quick turn over for the optimization cycle, when parameters 

are changed 

‣ eliminate manual work for re-tuning simulation and reconstruction 

ML model may be suboptimal comparing to “the best” solution 
‣ however it catches main features, that is usually good enough to 

estimate physics performance and give feedback to ongoing 
detector R&D  

I’ll demonstrate how it can be used in LHCb U2 ECAL inspired 
environment
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Fast SIM Response

Generate sample of calorimeter local 
responses to single particles with GEANT  

Different approaches may be used then 
‣ use generated sample as an object library and 

pick the best object in the optimization cycle 
using fast search techniques 

‣ train a ML generative model which reproduce 
major features of original response matrix
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Detector Response

Generative model trained on the sample produced by 
Geant4 for LHCb-inspired shashlik ECAL technology 
produces good enough clusters at 1e-5 smaller CPU time
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Spatial Reconstruction

Simple regression:    

More complicated:   

Full regression:      

xCM → X, yCM → Y

(xCM, yCM,
dx
dz

,
dy
dz

, ∑ Ei,j) → (X, Y )

(Ei,j,
dx
dz

,
dy
dz ) → (X, Y )
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Spatial Reconstruction

Train ML regressor (xgboost) to reconstruct coordinate 
‣ non-parametric blindly trained ML regressor well reproduce manually-tuned 

parametrized reconstructor 

‣ ML approach is agnostic to various calorimeter properties
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Pileup Mitigation with Timing

Performance strongly dependent on peculiar 
details of detector and electronics behaviors 
‣ hard to reproduce in simulation 

Test beam results provide the latest and 
greatest information 
‣ evaluate important features  

‣ calibrate simulation on measured points 
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Data Used

Data obtained from the 30 GeV electron beam @DESY 
‣ “output” module of the LHCb electromagnetic calorimeter 

‣ each signal is 1024 impulse measurements 

200 ps sampling (5GHz) 

‣ artificial re-sampling to lower sampling rates
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Time Resolution

Different regressors demonstrate similar result 
‣ algorithm-agnostic estimation of the actual signal timing 

properties 

‣ use xgboost for following studies
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Effect of Background Contribution

At high pileup expect overlap of signals from different 
vertexes 
‣ timing information may be used to mitigate pileup 

for individual calorimeter cell  

‣ as a part of signal processing at readout 

for several cells of energy clusters 

‣ at RECO level 

‣ Consider individual cells in the following
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Single vs Double Signal Discrimination

Combine two signals 

‣ at given amplitude ratio  

‣ at given time shift 

Sensitive to time shifts greater than 1 ns  
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Effect on Time Resolution

Well defined region of time 
resolution degradation 
‣ appropriate mixture of 1-signal and 

2-signal models should be used for 
model training
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𝛥t~𝒩(1ns)

𝛥t~𝒩(1ns)

Various Esig/Ebkg

Various models                      
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Effect on Amplitude Resolution

How well could we extract signal 
amplitude on top of the background 
contribution? 

‣ sampling rate makes difference
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Esig = E ×
α

(1 + α)
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Global Optimization 

Many parameters to optimize simultaneously 
‣ e.g. granularity distribution in LHCb U2 ECAL 

Trade between physics performance and costs 
‣ not obvious measure of success 

‣ non-differentiable optimization loss function  

Relatively long single iteration loop 

ML provides special methods developed for such use cases 
‣ e.g. Bayesian optimization
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Summary

Building a bridge between calorimeter detector R&D and its 
affect on the ultimate physics performance is a time 
consuming work 

Using standard ML approaches for classifications, 
regressions, domain adaptations, generations, optimization 
can automatize different steps of the optimization cycle 
‣ this allows quick evaluation of physics performance for the 

particular calorimeter technology and configuration 

speed up and steer R&D by quick feedback 

facilitate global detector optimization
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