

Analysis of SiW-ECAL technological prototype beam test with electron beam

Y. Kato^B, K. Goto^A, T. Suehara^A and ILD SiW-ECAL group Kyushu University^A The University of Tokyo^B

CHEF2019 @ Fukuoka, Japan 29th Nov. 2019

Table of Contents

- R&D of SiW-ECAL technological prototype
 - FEV13-Jp Status
- Beam Test 2019
- Procedure for Energy Measurement
- Analysis
 - Slab commissioning
 - Trigger adjustment
 - Masked channels
 - Pedestal uniformity / stability
 - MIP calibration
 - Shower
 - TDC

nternational Large Detector

One of the detector concepts at the ILC

- □Optimized for Particle Flow Algorithm
 - Reconstruct & identify all the particles
- Components
 - Vertex detector
 - Trackers
 - Calorimeters
 - ECAL
 - ScW-ECAL
 - SiW-ECAL
 - HCAL
 - Muon Yoke

etc.

R&D of SiW-ECAL technological prototypes

Major changes in FEV11 → 13 and SMBv4 → v5

- ➤ ASIC: SKIROC2 → 2A
 - Individual threshold control
 - Improvements on TDC
- > Smaller SMB footprint
- Connection by 0.4mm-pitch flex cables
 - Two candidates, footprint compatible

Capacitor for Power Pulsing
 0.4 mm thickness, 40 mF x 6

Analogue core: SKIROC2A

Outputs ADC mode: Charge High(\times 10) & Low(\times 1) 15 cells Analog TDC mode: Timing & Charge (High or Low) memories Time feedback 12 bit-ADC Ramp tagging capacitance 64 channels Sel ADC test ? Analog signal Preamp R2-010 RI-6 CI-45/F READ Signal out tolc ssh.GL mh G10 out ssh G1 conversion out ssh G10 Slow Sh. G10 RI-CS CI-tyf READ ain_selection TDC_on? (slow control) Fast Shaper Sp. 15p. 15p or 25pf HOLD Auto Gain 7 Forced Gain ? (slow control) 8-bit Oviny Box: Test Sel FlagTDCb Ext? Forced FlagTDCb? pulse Trigger (slow control) out_trigger FLAG TDC fine tuning individual trigger 10-bit DAC 10-bit DAC (from Digital ASIC) threshold adjustment arXiv:1801.02024

FEV13-Jp Status

ASIC: SKIROC2A

Si thickness: 320 µm & 650 µm New!

256 ch/sensor x 4 sensor/slab

FEV-SMB Connection: Flexible cable or Micro-coaxial cable

EM shielding: w/ Carbon frame and cover

Operation: Power Pulsing

		· A		
	71 1 1			
1	TORREST TORREST			THE STATE OF THE STATE OF
1				and the same of th

Total 5 slabs in Kyushu U., Japan

slab ID	P1	P2	P3	K1	K2
Si thickness	650 µm	650 µm	320 µm	650 µm	650 µm
Board production	in Kyushu U.	in Kyushu U.	in Kyushu U.	in LLR	in Kyushu U.

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e- beam: 1 5 GeV
- Presence from:

Support & Hardware from:

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e- beam: 1 5 GeV
- Objectives:
 - Comparison of ASU based on BGA and based on Chip-On-Board (COB)
 - Test of new SL-Boards (SLB)
 - Validation of FEV13-Jp ← Target of this talk
- Programs:

MIP program (w/o Tungsten)

- Position scan for MIP calibration
- TDC test
- Angled beam: 25 deg.
- Retriggering / double pedestal

Shower program (w/ Tungsten)

- Energy measurement
- Response from large signal
- TDC / auto gain
- Edge effect

8

Setup for Beam Test

- Devices: 2 types of readouts
 - DIF based slabs: FEV13-Jp x 5
 - SLB based slabs:
 - COB × 2
 - FEV12 × 2
- Absorber: Tungsten
 - $X_0 = 3.5$ mm, $R_M = 9$ mm, $\lambda_0 = 96$ mm

- SLB slabs DIF slabs
- Tungsten (2.1 mm / 4.2 mm)

Procedure for Energy Measurement

Single Slab Analysis

- 1. Trigger adjustment & Masking of noisy channels
- 2. Pedestal calibration

```
16 chips × 64 channels × 15 memories
```

3. Gain calibration using MIP 16 chips × 64 channels

Multi Slab Analysis

- 1. Timing coincidence using bunch crossing ID (BCID): $\Delta t = 0.2 \mu s$
- 2. Event Building

Trigger Adjustment (@ Kyushu)

 Threshold scan is performed for estimation of S/N_{Trig} and trigger adjustment. (previous TB: 11.6)

$$S/N_{Trig} \equiv \frac{\mu_{2\text{MIP}} - \mu_{1\text{MIP}}}{\sigma_{1\text{MIP}}}$$

- Test pulse of {4.2, 8.4} fC is injected.
 4.2 fC: 1 MIP for 320 µm
- S-curve is fitted by Err-function.

$$f(x) = A \times Erfc(\frac{x - \mu}{\sqrt{2}\sigma}) + const.$$

Injection [fC]	4.2	8.4	
mean [DAC]	265.4	340.4	
sigma [DAC]	12.0 worse! 12.5		
S/N_{Trig}	6.4 ± 0.8		

 Trigger is set as 0.5 MIP of 320 μm slab: ~ 230 DAC.

P1, all chips, ch 58-63

S/N_{Trig} is worse because of noisy pedestals at Kyushu.

But it should probably have stabilized in BT.

Pedestal Uniformity: Mean

Mean of Gaussian by which non-triggered ADC output is fitted.

Although there are differences between chips, mean of pedestals looks generally uniform within the same chip.

Pedestal Uniformity: Width

Sigma of Gaussian

P3-chip0 looks strange. This chip may be broken.

Pedestal Stability

Pedestal stability is confirmed in this beam time.

MIP event

MIP program is performed for mainly energy calibration of all the pixels.

- Hit map: Sum of the triggered events
- Event display: ADC output of single event after event building

MIP spectrum

- Typical MIP spectrums of each slabs are shown.
- Pedestal is subtracted.
- Fitted by Lan-Gaus function. 250
 Convolution of Landau × Gaussian
- MPV: Most Probable Value
- Definition of S/N_{ADC}:

$$S/N_{ADC} \equiv \frac{MPV_{1MIP}}{Width_{pedestal}}$$

slab	P1	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
MPV	146.5	144.9	71.3	141.4	146.1
Ped_width	3.0	3.0	3.3	2.8	3.1
S/N	49.0	48.9	21.7	50.2	47.5

MIP calibration: MPV maps

Shower event

- Event building have been achieved using the preceding results.
 - BCID offsets between SLB-based and DIF-based are corrected.
- A typical event is checked with event display.
 - In this picture, color scale is not converted to energy, still ADC output.

Shower Analysis: Hit Energy

Hit energy after MIP calibration (run 42003)
 Single cell hit energy in 3 GeV e beam

Simulation

- We performed detector simulation for this beam test.
- Simulator: DDSim in iLCSoft
- Structure of FEV13-Jp:
 - Carbon: 0.6 mm
 - Electronics(Air)
 - PCB: K1: 1.6 mm, others: 1.8 mm
 - Glue(Air): 0.08 mm
 - Si: 320 / 650 μm
 - Glue(Air): 0.08 mm
 - Cu: 0.06 mm
 - Carbon: 0.6 mm
 - Plastic: 5 mm
- SLB (FEV12 & COB):
 - Electronics(Air)
 - PCB: 1.6 mm
 - Glue(Air): 0.08 mm
 - Si: 500 µm
 - Glue(Air): 0.08 mm
 - Cu: 0.06 mm
 - Plastic: 5 mm

Comparison of Measured and Simulated.

- Simulated results are converted to MIP units and compared to measured ones.
- Work in progress.

TDC Analysis

- TDC mode operation test
- SKIROC2/2A has the ramp wave as one of the internal clocks
 - I measured this ramp waveform for calculating from TDC to real time factor
- The ramp wave can be measured with
 - synchronization of internal and external clock (injection signal)

TDC Calibration

- TDC is calibrated by injection signal synchronized and delayed against ramp wave.
- Problems:
 - saturation
 - phase should be shifted
- TDC to real time calibration factors
 - 0.127 ns / TDC count (up)
 - 0.066 ns / TDC count (down)

TDC Correlation with MIP

- Correlation of TDC between slab P1 and P2
- Select 1 ch (at the center of the beam), 450 < ADC < 500 (to avoid time-walk)
- ~10 / 1 ns at the normal slope: timing resolution ~ a few ns?
- TDC calibration in progress.

Correction of Time Walk

Time Walk: TDC dependence on ADC

TDC interval

TDC-interval vs ADC are fitted by Log function.

• Width of TDC-interval is improved: $117 \rightarrow 52$.

timing resolution: $5.2 \pm 1.6 \text{ ns}$

TDC interval

1200

Summary

- FEV13-Jp: 5 slabs from Kyushu University
- BT 2019 DESY: All the slabs worked consistently.
- Pedestal study
 - · Uniformity and Stability is verified.
- MIP calibration
 - MIP calibration is almost completed.
 - S/N is obtained for 5 slabs:

slab	Pl	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
S/N _{ADC}	49.0	48.9	21.7	50.2	47.5

- Shower analysis
 - Event building has done and shower event is reconstructed in event display.
 - Hit energy distribution looks consistent with simulation result.
 - Work in progress.
- TDC test
 - Time walk is corrected, but very preliminary.
 - Timing resolution is obtained, however we need more detail study using injection.

backup

Simulation Results

Simulation Results

Very preliminary

Remaining Issues

Double pedestal / Retrigger

run 32015, slab P1

Retrigger event: BCID is consecutive.

Double pedestal by retrigger

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In the first memory cell, the difference of typical Ped_mean is ~15.

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA~2 is worse.

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA~2 is worse.

- > There are double pedestal even after boid selection in TDC mode.
- The criteria for identification of double pedestal is not optimized.

Work in progress.

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.

 Update: New carbon frame **SMB** FEV13 HV socket

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.

Masking of Noisy channels

- A few channels are noisy after trigger adjustment and masked: 1 2 %.
- Individual threshold control was not used because it wasn't ready. → Next TB

Pedestal Analysis

- Non-triggered ADC output (around ~300 [ADC])
- Fitted by Gaussian

R&D of SiW-ECAL technological prototypes

ASU: 12 years of R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital with dyn. range ≥ 7500
- Mechanical placer & holder for Wafers → precision
- Thickness constraints

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	COB
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50– 75%
1st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1 st SLABs	2016	FEV11	7 units	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trip.} 6–8 % masked
1 st technological ECAL	2018	SLABvFEV11 & FEV13 SK2a+ Compact stack	SK2 & SK2a (>timing)	Improved S/N Timing

R&D of SiW-ECAL technological prototypes

Beam-test 2015-2018

