DOMA Deep Dive: University of Illinois

Ben Galewsky (<u>bengal1@Illinois.edu</u>) Mark Neubauer (<u>msn@illinois.edu</u>)

ILLINOIS NCSA | National Center for Supercomputing Applications **ILLINOIS** Physics COLLEGE OF ENGINEERING

The Illinois DOMA Team

Mark Neubauer

Professor of Physics University of Illinois at Urbana-Champaign Affiliate appointments in ECE Dept. & NCSA

Ben Galewsky

Research Programmer Innovative Software and Data Analysis Group National Center for Supercomputing Applications

Current Scope of DOMA Work in IRIS-HEP

Our interest & effort is in an intelligent data delivery service for analysis

- This is the DOMA-side of a coherent R&D effort within IRIS-HEP leading to innovative, multi-experiment data analysis systems and software for HEP
- Systems have not been optimized for analysis in ATLAS/CMS, only production

Our current approach is centered on a columnar, query-based system

- To my knowledge, this was first proposed for HL-LHC analysis (independently) by Neubauer and Pivarski during the round-table discussion at the HSF CWP Kickoff meeting at SDSC in Jan 2017. This was then fleshed-out into the CWPs.
- To my knowledge, an "intelligent"/accelerated service layer for data delivery between future data lakes and consumers was ServiceX proposed by UChicago
- The status of Illinois work on a columnar data delivery service follows

Events in Root

EVENT ID 300	Electrons			Muons		
	Mass	eta	phi	Mass	pt	dz
	Electrons					
		Electrons			Muons	
	Mass	Electrons eta	phi	Mass	Muons pt	dz
EVENT ID 301	Mass		phi	Mass		dz

Event Loop Processing

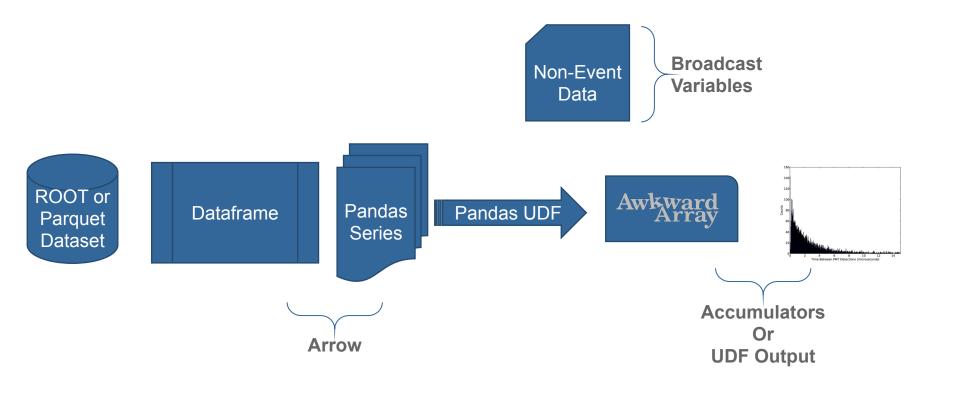
- Traditional Pattern:
 - Load values from event into local variables
 - Evaluate several expressions
 - Store Derived Values
 - Repeat for each event
- Advantages
 - Familiar to physicists
- Disadvantages
 - Not optimized for CPU vector processing operations

ILLINOIS NCSA

• Not easily portable to GPUs

Columnar Analysis

- New Pattern
 - Load values from many events into contiguous arrays
 - Nested content is represented as flat arrays with offsets
 - Evaluate several array operations
 - Store derived values
 - Repeat for next batch of values
- Disadvantages
 - New paradigm for physicists
 - Not inherently supported by Root
- Advantages
 - Takes advantage of CPU vectorized operations


- Easily ported to GPUs
- Easy and fun to write

Spark-HEP-Query

- Abstract away the machinery for running columnar analysis
- Physicists write a class that has a calc method that accepts a dictionary of Physics Objects

- Same science code can be run:
 - Locally in Uproot
 - On Spark
 - Parsl on the Grid (in progress)

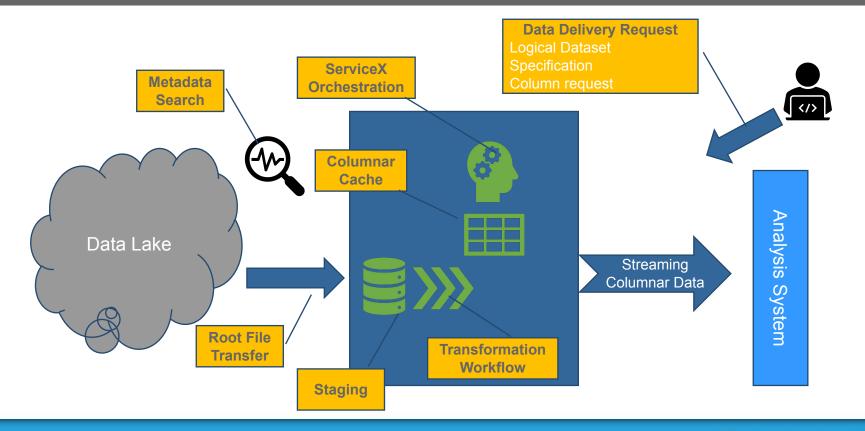
Spark-Based Analysis

Issues with Framework

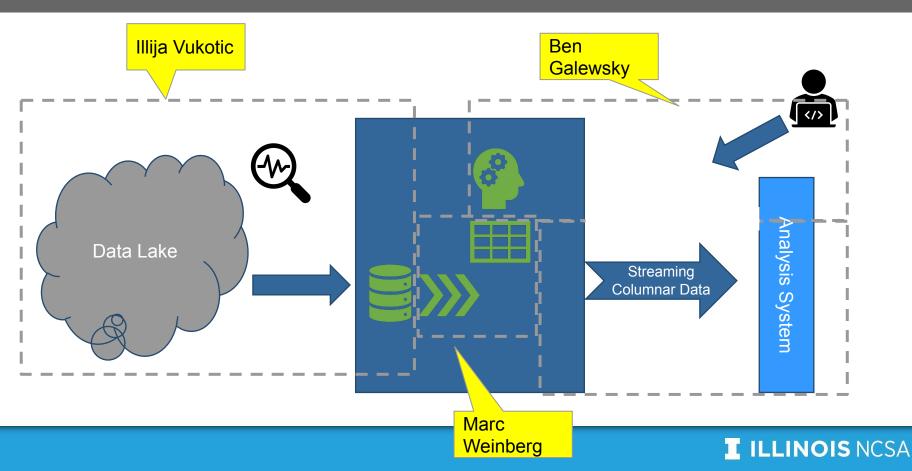
- Expensive to Load ROOT files into Parquet
- Java ROOT Reader can only handle simple ROOT files
 CMS NanoAOD
- We don't have existing Spark infrastructure to run jobs on

Looking at the Wider Environment

- ROOT datasets are Large
- Expensive to move datafiles around the world
- Many of the data records require extensive dependencies to read
- The vast majority of file's properties are not used for analysis
- Many of the properties are common to most analysis



A distributed, caching columnar data service



Architecture

Implementation

Component Details

- Data Lake
 - Most likely experiment specific.
 - May be regional replicas
- Metadata Search
 - Find Root file references by logical dataset identification

- CMS has DBS for this
- Root File Transfer
 - Transfer datafiles from lake to staging area

Component Details

- Staging
 - Root files are transferred from the data lake and staged in local disk prior to transformation
 - Could be staged in XCache
- Transformation Workflow
 - Container based and carefully versioned
 - Code for extracting requested branches no matter how complicated the Root file is

Component Details

- Columnar Cache
 - Cache to hold transformed data
 - Columnar format to efficiently serve up only requested columns
 - Can be indexed to efficiently filter out events
- ServiceX Orchestration
 - Receives data delivery requests
 - Determines if data can be served from cache
 - Upscales requests to include frequently referenced columns to improve cache reusability

ILLINOIS NCSA

• Orchestrates data download and transformation for cache misses

Output From Service

- Options under consideration
 - Stream Arrow Buffers via Kafka
 - Stream into analytic spark cluster
 - Stream to local parquet file writer
 - Write to local file system and use GridFTP to transfer

Current Status

- 1. Basic REST service
- 2. Connection to Rucio
- 3. Transformer container works with xAOD files. Only single branches
- 4. Streaming service

Runs in Kubernetes

