
DOMA Deep Dive: 
University of Illinois

Ben Galewsky (bengal1@Illinois.edu)
Mark Neubauer (msn@illinois.edu)

mailto:bengal1@Illinois.edu
mailto:msn@illinois.edu


The Illinois DOMA Team

Mark Neubauer
Professor of Physics
University of Illinois at Urbana-Champaign
Affiliate appointments in ECE Dept. & NCSA

Ben Galewsky
Research Programmer
Innovative Software and Data Analysis Group
National Center for Supercomputing Applications



Current Scope of DOMA Work in IRIS-HEP
➢ Our interest & effort is in an intelligent data delivery service for analysis

○ This is the DOMA-side of a coherent R&D effort within IRIS-HEP leading to 
innovative, multi-experiment data analysis systems and software for HEP

○ Systems have not been optimized for analysis in ATLAS/CMS, only production

➢ Our current approach is centered on a columnar, query-based system
○ To my knowledge, this was first proposed for HL-LHC analysis (independently) 

by Neubauer and Pivarski during the round-table discussion at the HSF CWP 
Kickoff meeting at SDSC in Jan 2017. This was then fleshed-out into the CWPs.

○ To my knowledge, an “intelligent”/accelerated service layer for data delivery 
between future data lakes and consumers was ServiceX proposed by UChicago

➢ The status of Illinois work on a columnar data delivery service follows 



Electrons
Mass eta phi

Muons
Mass pt dz

EVENT ID 300

Electrons
Mass eta phi

Muons
Mass pt dz

EVENT ID 301

Events in Root



Event Loop Processing 

• Traditional Pattern:
• Load values from event into local variables
• Evaluate several expressions
• Store Derived Values
• Repeat for each event

• Advantages
• Familiar to physicists

• Disadvantages
• Not optimized for CPU vector processing operations
• Not easily portable to GPUs



Columnar Analysis
• New Pattern

• Load values from many events into contiguous arrays
• Nested content is represented as flat arrays with offsets

• Evaluate several array operations
• Store derived values
• Repeat for next batch of values

• Disadvantages
• New paradigm for physicists
• Not inherently supported by Root

• Advantages
• Takes advantage of CPU vectorized operations
• Easily ported to GPUs
• Easy and fun to write 



Spark-HEP-Query

• Abstract away the machinery for running columnar analysis
• Physicists write a class that has a calc method that accepts a 

dictionary of Physics Objects
• Same science code can be run:

• Locally in Uproot
• On Spark
• Parsl on the Grid (in progress)



ROOT or 
Parquet 
Dataset

Dataframe Pandas 
Series

Pandas UDF

Non-Event 
Data

Broadcast 
Variables

Arrow

Accumulators
Or

UDF Output

Spark-Based Analysis



• Expensive to Load ROOT files into Parquet
• Java ROOT Reader can only handle simple ROOT files

• CMS NanoAOD
• We don’t have existing Spark infrastructure to run jobs on

Issues with Framework



Looking at the Wider Environment

• ROOT datasets are Large
• Expensive to move datafiles around the world
• Many of the data records require extensive dependencies to read
• The vast majority of file’s properties are not used for analysis
• Many of the properties are common to most analysis



Service X

A distributed, caching columnar data service

Identify events 
in dataset

Include 
frequently used 

columns to 
increase cache 

hits

Cache 
transformed 

events
Filter out events 

at high level
Stream selected 

columns to 
analysis



Architecture

Data Lake

Data Delivery Request
Logical Dataset 
Specification
Column requestMetadata 

Search

Streaming 
Columnar Data

A
nalysis S

ystem

Root File 
Transfer

Staging

Transformation 
Workflow

Columnar 
Cache

ServiceX 
Orchestration



Implementation

Data Lake
Streaming 

Columnar Data

A
nalysis S

ystem

Illija Vukotic

Marc 
Weinberg

Ben 
Galewsky



Component Details

• Data Lake
• Most likely experiment specific.
• May be regional replicas

• Metadata Search
• Find Root file references by logical dataset identification
• CMS has DBS for this

• Root File Transfer
• Transfer datafiles from lake to staging area



Component Details

• Staging
• Root files are transferred from the data lake and staged in local disk prior 

to transformation
• Could be staged in XCache

• Transformation Workflow
• Container based and carefully versioned
• Code for extracting requested branches no matter how complicated the 

Root file is



Component Details

• Columnar Cache
• Cache to hold transformed data
• Columnar format to efficiently serve up only requested columns
• Can be indexed to efficiently filter out events

• ServiceX Orchestration
• Receives data delivery requests
• Determines if data can be served from cache
• Upscales requests to include frequently referenced columns to improve 

cache reusability
• Orchestrates data download and transformation for cache misses



Output From Service

• Options under consideration
• Stream Arrow Buffers via Kafka

• Stream into analytic spark cluster
• Stream to local parquet file writer

• Write to local file system and use GridFTP to transfer



Current Status

1. Basic REST service
2. Connection to Rucio
3. Transformer container works with xAOD files. Only single 

branches
4. Streaming service

Runs in Kubernetes


