LUXE Experimental Conditions and Detector Design

Oleksandr Borysov

FCAL Workshop DESY, September 19, 2019

Outline

LUXE - Laser Und XFEL Expriment

- Introduction
- LUXE setup for bremsstrahlung photon pair production study
- Signal study in MC simulations
- Background estimation for different geometries

Laser-assisted pair production

$$\gamma + n\omega \rightarrow e^+e^-$$

One photon pair production (OPPP) at ultra high intensity - non-perturbative physics

The rate of laser-assisted (OPPP) rate:

$$\Gamma_{\rm OPPP} = \frac{\alpha m_e^2}{4\,\omega_{\rm i}} \, F_{\gamma}(\xi, \chi_{\gamma})$$

$$\xi \equiv \frac{e \, |\mathbf{E}|}{\omega m_e} = \frac{m_e}{\omega} \frac{|\mathbf{E}|}{\mathbf{E}_c} \,, \qquad \chi_{\gamma} \equiv \frac{k \cdot k_i}{m_e^2} \, \xi = (1 + \cos \theta) \, \frac{\omega_i}{m_e} \, \frac{|\mathbf{E}|}{\mathbf{E}_c}$$

Use bremsstrahlung photons produced by XFEL beam hitting tungsten target.

$$\Gamma_{\text{BPPP}} = \frac{\alpha m_e^2}{4} \int_0^{E_e} \frac{d\omega_i}{\omega_i} \frac{dN_\gamma}{d\omega_i} F_\gamma(\xi, \chi_\gamma(\omega_i))$$

$$\Gamma_{\text{BPPP}} \to \frac{\alpha m_e^2}{E_e} \frac{9}{128} \sqrt{\frac{3}{2}} \, \chi_e^2 \, e^{-\frac{8}{3\chi_e} \left(1 - \frac{1}{15\xi^2}\right)} \frac{X}{X_0}$$

Photon-Photon collisions at LUXE

European XFEL beam for LUXE

Parameter	Value
Beam Energy [GeV]	up to 17.5
Bunch Charge [nC]	0.25-1.0
Number of bunches	1
Repetition Rate [Hz]	up to 10
Spotsize at the IP [μm]	5–20

e^{-} 1.26 – 6.25 x 10⁹ Normalized emittance 1.4 mm mrad;

Laser parameters for different stages of LUXE

	30 TW, 8μm	300 TW, 8μm	300 TW, 3μm
Laser energy after compression (J)	0.9	9	9
Percentage of laser in focus (%)	40	40	40
Laser energy in focus (J)	0.36	3.6	3.6
Laser pulse duration (fs)	30	30	30
Laser focal spot FWHM (µm)	8	8	3
Peak intensity in focus (Wcm ⁻²)	1.6×10^{19}	1.6×10^{20}	1.1×10^{21}
Dimensionless peak intensity, ξ	2	6.2	16
Laser repetition rate (Hz)	1	1	1
Electron-laser crossing angle (rad))	0.35	0.35	0.35

Bremsstrahlung production: Geant4 vs PDG formula

PDG recommended formula for thin targets for bremsstrahlung production:

$$\omega_i \frac{\mathrm{d}N_\gamma}{\mathrm{d}\omega_i} \approx \left[\frac{4}{3} - \frac{4}{3} \left(\frac{\omega_i}{E_e} \right) + \left(\frac{\omega_i}{E_e} \right)^2 \right] \frac{X}{X_0}$$

It is used to calculate integral on slide 3 to get the pair production rate.

- The formula does not take into account angular distribution of bremsstrahlung photons
- Geant4 simulation:
 - accounts for laser beam transverse size
 - and thick targets to optimize the photon flux.

- Gaussian beam;
- Tungsten target 1%X0 (35um), 2m from IP;
- 10M electrons
- Two histograms are compared:
 - |x| < 1mm and |y| < 1mm;
 - |x| < 25um and |y| < 25um.

Geant4 simulation with different target thickness and different physics lists

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm.

Number of photons inside |x|<25um and |y|<25um;

Ny	4.91E+06		
Ny, E >7GeV	4.66E+05		

MC Simulation of Bremsstrahlung Pair Production

Rate of electron-positron pairs production as a function of laser intensity, MC simulation.

For different (limited) distances form the target to IP

$$N_{\gamma}(R) = \frac{R_0^2}{R^2} N_{\gamma}(R_0)$$

OPPP e-, e+ spectra

Background Study in Geant4

Distance from the bremsstrahlung target to IP is 7.25 m

Background tracks

700M e- simulated

Background track with energy above 1 GeV

X (mm)

Beam Pipe D = 10 cm

Beam Pipe D = 10 cm. Vertexes of the e+, e- tracks entering the detector volume.

300M e-;

1m < Z < 2.5m; (Spectrometer magnet)

Geometry with a Magnet after the Beam Dump

Magnet:

• Length: 1 m;

• Drift: 0.7 m;

• Field 1.4 T;

• y = 6.3 cm, for 8 GeV

Distance

Target – IP: 9 m.

1.678e9 e-

Summary

- The number of electron-positron pairs expected in collisions of bremsstrahlung photons with laser beam is in the range of 10^{-2} 10^{2} per bunch crossing (depending on laser intensity);
- Lumical could provide complementary measurements of e+e- pairs;
- There is significant background in e+e- pairs detectors produced by low energy (below 1 GeV) particles. For different geometries it might range 5-20 cm⁻².
- Calorimeter would be an essential tool in rejecting the background.
- High position and energy resolution of the calorimeter is important for good performance.
- Continue study in more detailed and realistic geometry.

Back up

Strong field QFT

- In a presence of strong electromagnetic field, the virtual charges, start to separate.
- In the Schwinger limit, an electric field (ϵ =1.3×10¹⁸V/m) does the work equivalent to separating two electron rest masses over a Compton wavelength

$$\frac{h}{mc}e \varepsilon \geqslant mc^2$$

• Vacuum state becomes unstable and the field is predicted to induce vacuum pair production.

Fields reach the Schwinger limit:

- in relativistic heavy ion collisions;
- in an astrophysical setting near the surface of a magnetar;
- in strong gravitational field near a black hole.

High power laser facilities provide a possibility to study strong field QED in clean lab conditions.

LUXE intended to use EU.XFEL e- beam and high power laser to probe strong field QED

Electron and laser beam parameters

E_pulse, μJ	Crossing angle, rad		Laser σz, ps	N Electrons	Electron σx, mm		
3.5*10^6	0.3	10	0.035	6.25E+09	0.005	0.005	0.08

- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized.