LUXE Participation in FCAL Beam Test

Oleksandr Borysov

FCAL Workshop DESY, September 20, 2019

Outline

- Introduction
- Design of experimental setup at EU.XFEL
- Possible FCAL detectors application at LUXE

Bremsstrahlung production: Geant4 vs PDG formula

PDG recommended formula for thin targets for bremsstrahlung production:

$$\omega_i \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\omega_i} \approx \left[\frac{4}{3} - \frac{4}{3}\left(\frac{\omega_i}{E_e}\right) + \left(\frac{\omega_i}{E_e}\right)^2\right] \frac{X}{X_0}$$

It is used to calculate integral on slide 3 to get the pair production rate.

- The formula does not take into account angular distribution of bremsstrahlung photons
- Geant4 simulation:
 - accounts for laser beam transverse size
 - and thick targets to optimize the photon flux.

- Gaussian beam;
- Tungsten target 1%X0 (35um), 2m from IP;
- 10M electrons
- Two histograms are compared:
 - |x| < 1mm and |y| < 1mm;
 - |x| < 25um and |y| < 25um.

Geant4 simulation with different target thickness and different physics lists

y angular distribution for different physics lists

- Angular distribution is the widest for option_4 physics list and the narrowest for the local one.
- Angular distribution explains bottom right plot on previous slide.
- Total number of photons in forward region is identical for all physics lists.

Number of photons inside |x|<1.5 m and |y|<1.5 m

Polar angle distribution and spectra

W, 17.5 GeV. Photons

- Beam, x=y=px=py=0;
- Tungsten target 1%X0 (35um) thickness
- 2 m from IP;
- Production cut: 1 μ m.

Copper target 1 mm. Photons

8

Copper 2.5 mm. Photons

Copper 2.5 mm, Electrons 5 GeV

TB Magnet

MD-Magnet, Gap 365 mm, Strahl 21

X (mm), 0 = Polmitte

TB Magnet Drawing

Back up

Initial electron phase space distribution. Target 2 m, 5 m and 12 m upstream of IP

- 2 m: σx = 19 μm;
- 5 m: σx = 43 μm;
- 12 m: σx = 100 μm;

 $\sigma_{x,y}$ at IP: 5 μ m; Normalized emittance 1.4 mm mrad;

14

Electron and laser beam parameters

E_pulse, µJ	Crossing angle, rad	Laser σxy, μm	Laser σz, ps	N Electrons	Electron σx, mm	Electron σy, mm	Electron σz, ps
3.5*10^6	0.3	10	0.035	6.25E+09	0.005	0.005	0.08

- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized.