

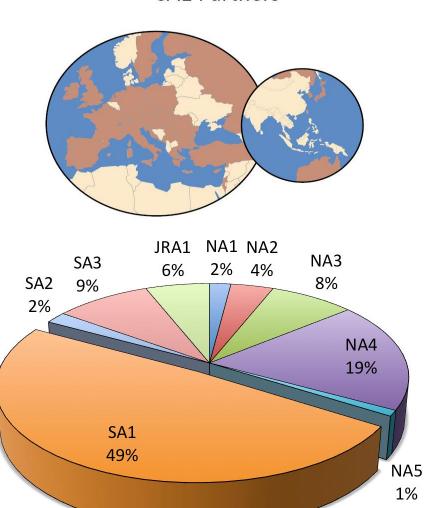
Enabling Grids for E-sciencE

Grid Operations SA1 Status Report

Steven Newhouse (substituting for Maite Barroso Lopez)

EGEE-III Final Review, 23-24 June, 2010

www.eu-egee.org



SA1 Activity Overview

Enabling Grids for E-sciencE

SA1 Partners

28 countries, 175 FTE

Country	Total PM planned at M24 (1)	Total FTE	
Austria	37		
Belgium			
Bulgaria	60	2.5	
CERN	420	17.5	
Croatia	47	2.0	
Cyprus	47	2.0	
Czech Republic	58	2.4	
Finland	24	1.0	
France	450	18.8	
Germany	392	16.3	
Greece	131	5.5	
Hungary	38	1.6	
Ireland	36	1.5	
Israel	52	2.2	
Italy	468	19.5	
Netherlands	204	8.5	
Norway			
Poland	152	6.3	
Portugal	100	4.2	
Romania	57	2.4	
Russia	424	17.7	
Serbia	55	2.3	
Slovakia	33	1.4	
Slovenia	16	0.7	
Spain	317	13.2	
Sweden	120	5.0	
Switzerland	24	1.0	
Turkey	66	2.8	
UK	372	15.5	
Total PM planned at M24	4200		
Total FTE		175.0	

Grid Operations

Operate the EGEE production infrastructure, providing a high quality service to the application groups

- This is made possible by a number of support structures including
 - Regional Operation Centres
 - Global Grid User Support (GGUS)
 - Release and deployment management
 - Grid security coordination
 - Operational procedures and tools
- Structural changes needed for the transition to a sustainable model

Size of the infrastructure

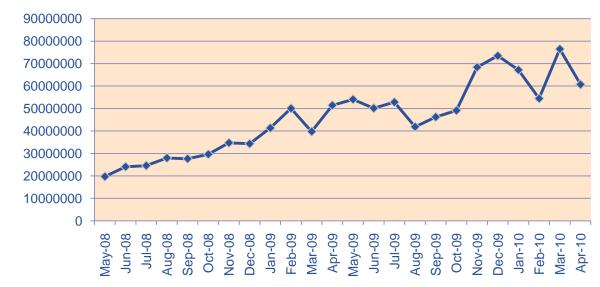
Enabling Grids for E-sciencE

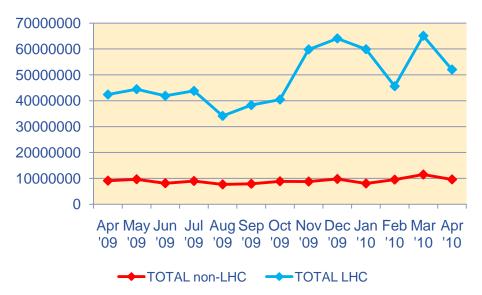
Number of EGEE-III certified sites (April 2010): 317 (in 52 countries)

Computing resources, doubled since last year:

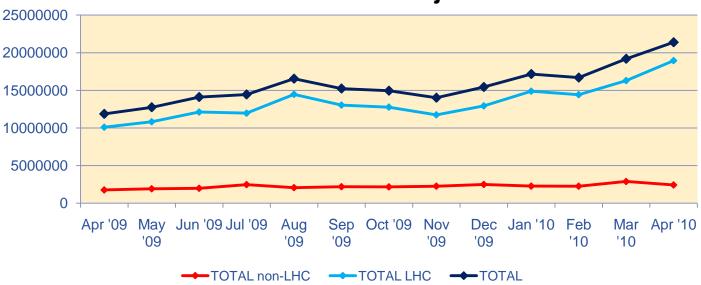
- **243,020 cores** (139,000 last year)
- 500 MSI2k (212 MSI2k last year)

(MSI2k = Normalised CPU time to a reference value of Mega SPECint 2000)


Storage resources:


40 Pb disk, 61 Pb tape (25 Pb disk, 38 Pb tape last year)

Usage of the infrastructure (I)



- usage from non-LHC communities stable
- LHC usage growing, real activity: Real data processing, simulations, analysis

Usage of the infrastructure (II)

- Average of 15 million jobs per month (14M last year)
- 525.000 jobs/day (480.000 jobs/day last year)
- Non-LHC VOs with stable workload
- LHC running increasingly high workloads
 - anticipate millions / day soon

Site availability and reliability (I)

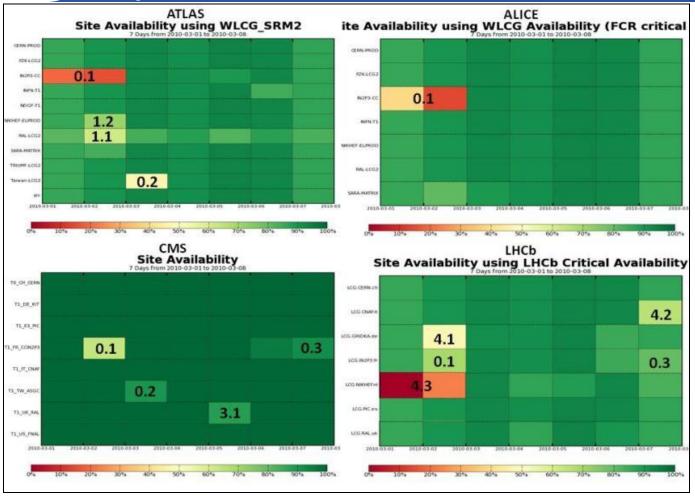
- No changes in algorithm regarding last year
 - Service available if any of the service instances are available (logical OR)
 - Site available if all services are available (logical AND of all service types)
- EGEE League Tables (monthly reports) published and followed up with ROCs
 - Also available for top 10 VOs
- Underperforming sites requested to report justifications, collected in a wiki page
 - https://twiki.cern.ch/twiki/bin/view/EGEE/MonthlyAvailability

Italy		
GRISU-CYBERSAR-CAGLIARI	57/57	Problem on local cluster and storage
GRISU-CYBERSAR- PORTOCONTE	45/45	problem on SE due to the lcg-voms certificate expired, problem with a bdii set by mistake on WNs
INFN-CAGLIARI	63/63	Maintenance on CE and some problems on few worker nodes on which we are investigating
INFN-GENOVA	66/93	Change CC cooling system and rearrange racks. Operations on UPS
INFN-PADOVA-CMS	64/64	problem related to a bug in the new STORM version, jobs submission problems (reinstallation of CE) and authentication problems due to few sgmops pool accounts
INFN-PERUGIA	14/24	Hardware upgrade & issues on SE
TRIGRID-INFN-CATANIA	62/70	UPS maintenance & Hardware problems - DCP

EGEE League Tables

April 2010	Avail-	Reli-
Region	ability	ability
AsiaPacific	92 %	93 %
CERN	98 %	99 %
CentralEurope	88 %	88 %
France	97 %	97 %
GermanySwitzerland	93 %	93 %
Italy	94 %	94 %
NGI_GRNET	96 %	97 %
NGI_PL	94 %	95 %
NorthernEurope	91 %	91 %
ROC_Canada	92 %	93 %
ROC_IGALC	79 %	90 %
ROC_LA	89 %	89 %
Russia	86 %	89 %
SouthEasternEurope	77 %	77 %
SouthWesternEurope	91 %	91 %
UKI	93 %	95 %

- Most regions have a good performance well above targets (70% availability and 75% reliability)
- April had highest average availability in the last year: 91%
- New ROCs started with lower A/R levels than experienced ones, took a few months to achieve targets



Site availability and reliability (II)

- Sites with availability <50% for three consecutive months are removed from the Production infrastructure
 - 7 sites removed, from AsiaPacific and Russia
- Simplification of downtime declaration rules
 - To enforce scheduled downtimes
 - Unscheduled downtimes has a big impact in site availability! And to users!
 - Ratio of scheduled/unscheduled downtimes doubled between May-09 and Apr-10
 - Sites are doing a better job following the procedures and pro-actively informing their user communities of planned maintenances
- New ROCs needed a few months to get stable and achieve similar availabilities than the rest of the infrastructure
- Most regions have a good performance well above targets (70% availability and 75% reliability)

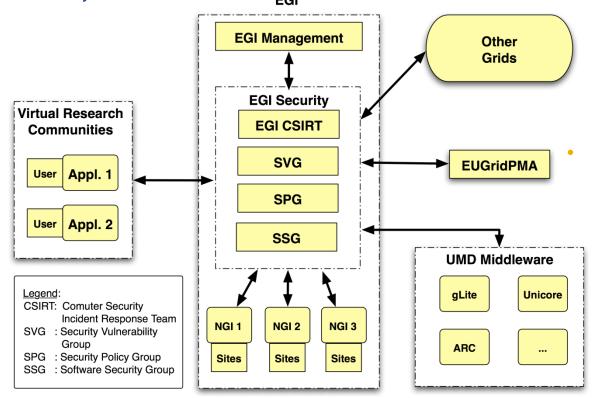
Site availability seen by VOs

- Views from WLCG dashboards
- Built on top of VO specific grid monitoring probe results

Release and deployment management

- Move to Staged rollout as transition to EGI model:
 - Deploy middleware updates in a controlled way on the production infrastructure to get early feedback on the release, reducing the duplication of work at multiple sites
 - All ROCs agree with the concept, few sites volunteer to take part on it
 - Requires commitment to upgrade quickly in production
 - As it is in production, might affect availability and reliability
- Process for retiring old versions of middleware services
 - Prototyped with Resource Brokers
 - Trying with gLite 3.1 services (replaced by gLite 3.2)
 - Big/medium sites able to follow new versions
 - Small ones slow, different issues, e.g. Obsolete H/W not running SL5
 - Sites per Software version: 48% gLite 3.2, 52% gLite 3.1
- List of gLite service versions supported by SA1 Operations
 https://twiki.cern.ch/twiki/bin/view/EGEE/SupportedServiceVersions

Operational security


- Distributed security operations
- Strong expertise in incident handling, including time deadlines for suspension of sites.
 - Failure to apply security patches is one of the main sources of incidents
 - Two EGEE wide security vulnerabilities last year:
 - First one in August, EGEE completely patched after 2.5 months
 - First time a security patch was enforced at the sites, at all levels, including PMB
 - 60+ sites warned about suspension within 7 days, only 4 suspended
 - Second one in November, EGEE patched after 1 month
 - 30+ sites warned about suspension, none suspended
- Effective security patching monitoring: Security monitoring tools developed and deployed to prevent security incidents and identify security weaknesses into sites
- Extensive connections outside the project
 - Channels between National Research and Education Networks (NRENs) and EGEE to ease the communication between each ROC security contact and the respective NREN

Operational security

Enabling Grids for E-sciencE

- Grid Security Vulnerability Group
 - Aims to help identify security weaknesses inorder to prevent incidents in deployed Grid middleware.
 - 33 issues handled during the last year (60 since the start of EGEE-III)
 - Transition to EGI Software Vulnerabilities Group (SVG) in progress, covering all the software distributed by EGI

Joint Security Policy Group

- 5 old policies revised and 2 new polices:
 - VO Registration, VO Membership Management, Security Incident Response, Grid AUP, Site Registration
 - User-level Job Accounting, VO Portals
- Security Policy Framework developed to present the current policies and to move forward in EGI

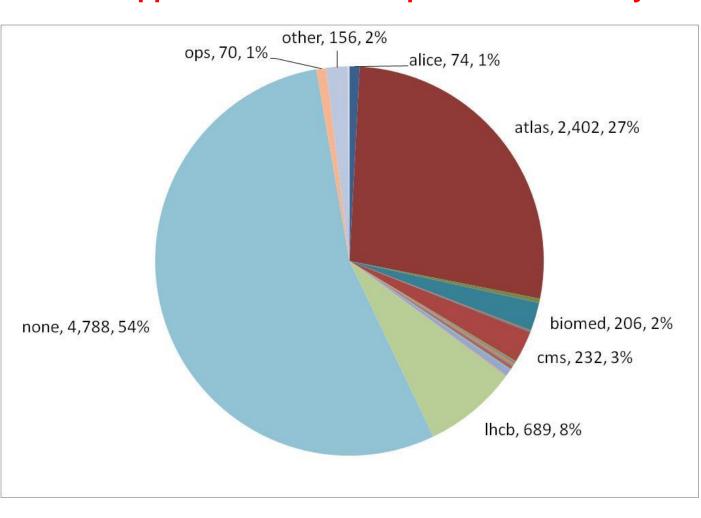
International Grid Trust Federation

- Bridged Research & Education federated ID and grid certificates
- New guidelines for key management and the use of automated clients published

Enabling Grids for E-sciencE

The EGEE helpdesk is a distributed system based on regional ticketing systems with central coordination and a central entry point for user support (GGUS).

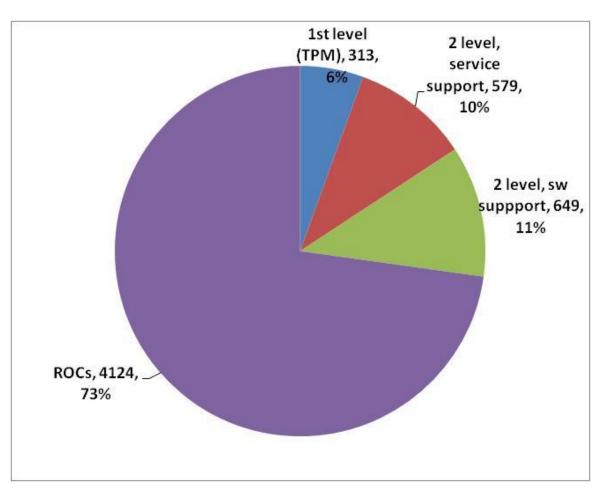
- It is the only front-end exposed to end users
 - Only developers/testers submit bugs directly to Savannah
 - GGUS tickets leading to Savannah bugs are set to "in progress" state, and automatically closed if the related Savannah bug reaches status "Ready for review".
 - 85 tickets ended in Savannah bugs since January 2010


Changes:

- Direct routing to sites (bypass 1st line support)
 - 21 % reduction in tickets handled by TPM in last year (2023 versus 3912)
 - ~80% tickets used direct routing, only 20% went through TPM
 - Additional automation analyzed and implemented as much as possible (cost of implementation versus ticket reduction):
 - Direct assignment to some VOs and SUs, ALARM and TEAM tickets, Ticket escalation by submitter

Enabling Grids for E-sciencE

User support tickets created per VO in the last year



- None: tickets where the submitting user does not explicitly define the associated VO
- Atlas is the major user (27%), followed by LHCb (8%), CMS (3%) and biomed (2%)
- Each VO has different support model

Enabling Grids for E-sciencE

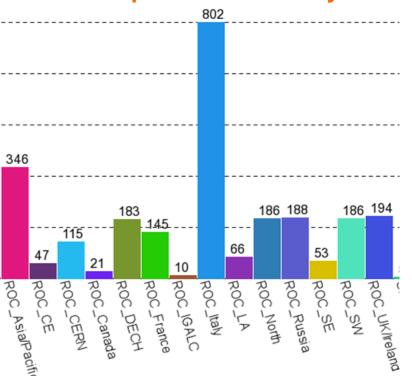
User support tickets created in the last year: per solution support unit

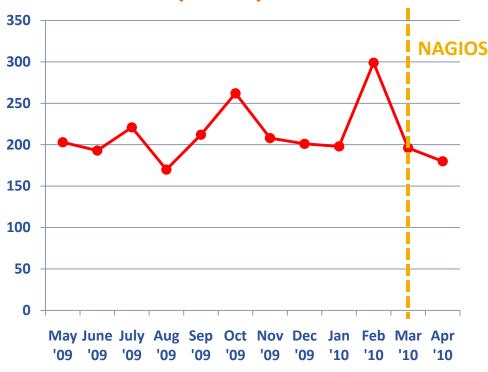
- Most tickets solved at ROCs/sites, 73%
 - Savannahconnection, problemtypes?
- 1st line support (TPM) also solving tickets, 6%
- Specialized support units (2 level) solving 21% of the tickets

Enabling Grids for E-sciencE

Average solution time per VO (NEED log scale to show low Vos?)

Grid Operator on duty


- Role of oversight and 1st level support for grid production infrastructure
 - teams of operators on duty (COD) opening tickets to sites in case of grid monitoring alarms
- New model, based on the devolution to regions, fully implemented since summer '09
 - First-line support done by each region, plus common layer for procedures, tools, escalation
- Improvements:
 - Regional teams closer to the sites
 - Aware of different site deployment scenarios
 - More incentivised to prevent incidents
 - Shorter response time: 5.75 days
 - Before regionalisation average response time 8 days
 - Distribution of responsibilities to ROCs → NGIs
 - Skills at ROC level will get partitioned when ROCs become NGIs


Grid Operator on duty

Enabling Grids for E-sciencE

Tickets opened in the last year

Tickets opened per month

- 2570 tickets opened in the last year with average response time 5.75 days
- Stable number of tickets opened by month, also after migration from SAM to Nagios
 - Move to new technology did not impact operations
 - Expect reduction in regional alarms as many sites deploying Nagios
 - Sites see issues before they are reported to them by RODs

Grid Operations Tools

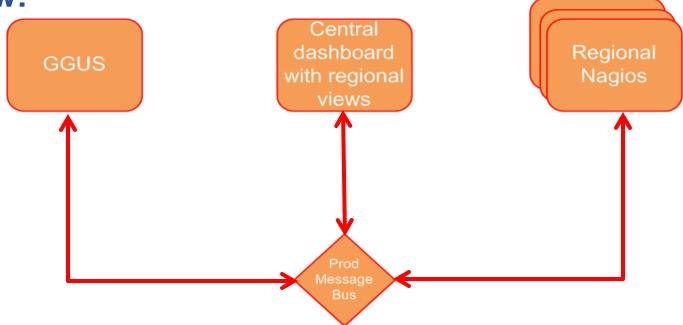
Enabling Grids for E-sciencE

Aims

- Improve reliability and availability of sites via operational tools
- Prepare operational tools for use in an EGI/NGI structure

Achievements:

- Site and Regional Monitoring via Nagios, a commodity open-source monitoring framework
- Better tools for site admins → faster problem detection & solution
- Operations dashboard with regional views, to raise alarms and GGUS tickets, used by R-COD
- Integration of operational tools via ActiveMQ, an open-source enterprise messaging system
- MyEGEE visualization portal, collaboration with OSG
- Availability/Reliability now calculated from regional Nagios results


Grid Operations Tools

Enabling Grids for E-sciencE

Last 2 years:

Now:

EGI: NGI prototyping

- The process to start integrating NGIs into the grid operations structure started in the last months of the project
 - 2 NGIs from 2 different ROCs (Poland from CE and Greece from SEE) volunteered to start and prototype the process
 - Included registration to managerial and operational structures, tool deployment, process adaptation when needed
 - Result: process prototyped, known and documented. Being followed in parallel by many other NGIs
 - Main difficulties: tight coordination needed between tools and teams to enable the new NGI
 - In both cases NGI staff overlapped with ROC staff with cumulated knowledge/experience. This is not the case for many NGIs, which will needed close support and training.

Lessons learnt

- Regionalization is expensive due to extra layers
 - Move to national based infrastructures has 'cheaper' core
- Operation tools
 - Importance of agreeing on formats for information exchange between tools
 - Rely where possible on widely adopted public domain solutions (e.g. Nagios)
 - Need to have a more integrated development activity

- Provided a stable and reliable infrastructure
 - While doubling (approx.) in capacity
 - Significant operational changes
- Need to improve operational tools
 - Home-grown tools & infrastructures costly to maintain and support
- Good transition to EGI, no major issues left
 - Full Implementation of ROC → NGI ongoing
- Global scientific collaborations relying on it
 - WLCG main user group, solid base for ESFRI engagement
- Collaboration was essential, important not to break this with regionalization/NGIs