Introduction to Machine Learning

Lecture 1

CTEQ Summer School 2019
University of Pittsburgh
July 2019
Bryan Ostdiek

List of resources

https://github.com/bostdiek/IntroToMachineLearning
https://github.com/iml-wg/HEP-ML-Resources
https://www.kaggle.com/
https://www.coursera.org/specializations/deep-learning

- Weak supervision
- Classification without labels (CWoLa)

Machine learning in High Energy Physics

Great collection of HEP machine learning resources https://github.com/iml-wg/HEP-ML-Resources

Machine learning in High Energy Physics

Snagging the top quark with a neural net

Howard Baer
Physics Department, Florida State University, Tallahassee, Florida 32306
Debra Dzialo Karatas
Center for Particle Physics, The University of Texas, Austin, Texas 78712
Gian F. Giudice
Theory Group, Department of Physics, The University of Texas, Austin, Texas 78712
(Received 20 December 1991)
The search for the top quark at $p \bar{p}$ colliders in the one-lepton-plus-jets channel is plagued by an irremovable background from W-boson-plus-multijet production. In this paper, we show how the top-quark signal can be distinguished from background in the distribution of neural network output. By making a cut on the network output, we maximize the ratio of signal to background in a final event sample, and compare our results with those obtained by making kinematical cuts on the data sample. We also demonstrate the robustness of the neural network method by training the neural network on signal events of one top mass and testing upon another.
PACS number(s): 13.85.Qk, 14.80.Dq

Great collection of HEP machine learning resources https://github.com/iml-wg/HEP-ML-Resources

Machine learning in High Energy Physics

Snagging the top quark with a neural net

Howard Baer
Physics Department, Florida State University, Tallahassee, Florida 32306
Debra Dzialo Karatas
Center for Particle Physics, The University of Texas, Austin, Texas 78712

Great collection of HEP machine learning resources https://github.com/iml-wg/HEP-ML-Resources

Machine learning in High Energy Physics

```
arXiv.org > hep-ex > arXiv:070
```

The ATLAS Collaboration
High Energy Physics - Experimerit

B-Tagging at CDF and DO, Lessons for LHC

T. Wright, for the CDF, Dø Collaborations
(Submitted on 11 Jul 2007)
The identification of jets resulting from the fragmentation and hadronization of b quarks is an important part of high-pT collider physics. The methods used by the CDF and DO collaborations to perform this identification are described, including the calibration of the efficiencies and fake rates. Some thoughts on the application of these methods in the LHC environment are also presented.

Comments: Proceedings of Hadron Collider Physics 2006; 6 pages, 8 figures

Great collection of HEP machine learning resources https://github.com/iml-wg/HEP-ML-Resources

Machine learning in High Energy Physics

```
arXiv.org > hep-ex > arXiv:070
```

The ATLAS Collaboration
High Energy Physics - Experiment
B-Tagging at CDF and DO, Lessons for LHC
T. Wright, for the CDF, DC
(Submitted on 11 Jul 2007)

The identification of jets re methods used by the CDF a rates. Some thoughts on th

Comments:
TMVA 4
Toolkit for Multivariate Data Analysis with ROOT
Users Guide
calibrations (systematic regression), event-level analysis
Great collection of HEP machine learning resources https://github.com/iml-wg/HEP-ML-Resources

Review: Linear Regression

How to fit data

1. Plot the data
2. Define the function

- $f(x, \vec{a})=a_{0}+a_{1} x$

3. Choose how to know what fits best

- a.k.a. Loss Function

- MSE: $L(x, y, \vec{a})=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i}, \vec{a}\right)-y_{i}\right)^{2}$

5. Find the minimum error (loss) (cost)

- $a_{\text {best }}=a$ when $\left(\left.\frac{\partial L(x, y, \vec{a})}{\partial \vec{a}}\right|_{x, y}=0\right)$

Review: Linear Regression

How to fit data

1. Plot the data
2. Define the function

- $f(x, \vec{a})=a_{0}+a_{1} x+a_{2} x^{2}$

3. Choose how to know what fits best

- a.k.a. Loss Function

- MSE: $L(x, y, \vec{a})=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i}, \vec{a}\right)-y_{i}\right)^{2}$

5. Find the minimum error (loss) (cost)

- $a_{\text {best }}=a$ when $\left(\left.\frac{\partial L(x, y, \vec{a})}{\partial \vec{a}}\right|_{x, y}=0\right)$

Review: Linear Regression

Quadralic?

How to fit data

1. Plot the data
2. Define the function

- $f(x, \vec{a})=a_{0}+a_{1} x+a_{2} x^{2}$

3. Choose how to know what fits best

- a.k.a. Loss Function

- MSE: $L(x, y, \vec{a})=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i}, \vec{a}\right)-y_{i}\right)^{2}$

5. Find the minimum error (loss) (cost)

- $a_{\text {best }}=a$ when $\left(\left.\frac{\partial L(x, y, \vec{a})}{\partial \vec{a}}\right|_{x, y}=0\right)$

Review: Linear Regression

Quadrabic?

How to fit data

1. Plot the data
2. Define the function

- $f(x, \vec{a})=a_{0}+a_{1} x+a_{2} x^{2}$

3. Choose how to know what fits best

- a.k.a. Loss Function

- MSE: $L(x, y, \vec{a})=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i}, \vec{a}\right)-y_{i}\right)^{2}$

5. Find the minimum error (loss) (cost)

- $a_{\text {best }}=a$ when $\left(\left.\frac{\partial L(x, y, \vec{a})}{\partial \vec{a}}\right|_{x, y}=0\right)$

Review: Lineáar Regression

Quadrakic?

How to fit data

1. Plot the data
2. Define the function

- $f(x, \vec{a})=a_{0}+a_{1} x+a_{2} x^{2}$

3. Choose how to know what fits best

- a.k.a. Loss Function

- MSE: $L(x, y, \vec{a})=\frac{1}{N} \sum_{i=1}^{N}\left(f\left(x_{i}, \vec{a}\right)-y_{i}\right)^{2}$

5. Find the minimum error (loss) (cost)

- $a_{\text {best }}=a$ when $\left(\left.\frac{\partial L(x, y, \vec{a})}{\partial \vec{a}}\right|_{x, y}=0\right)$

Is that good enough?
How many
parameters can we add?

Logistic Regression

What if we want to predict a class, not a number?

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?

Define one class as 1 (Signal)

Other class as 0 (Background)

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?
Define one class as 1 (Signal)
Other class as 0 (Background)

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?
Define one class as 1 (Signal)
Other class as 0 (Background)
-Linear Fit?

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?
Define one class as 1 (Signal)
Other class as 0 (Background)
-Linear Fit?
\bullet Round to nearest number?

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?
Define one class as 1 (Signal)
Other class as 0 (Background)
-Linear Fit?
\bullet Round to nearest number?

- How does it generalize to more data?

Logistic Regression

What if we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?
Define one class as 1 (Signal)
Other class as 0 (Background)
\bullet-Linear Fit?
\bullet Round to nearest number?
-How does it generalize to more data?

Logistic Regression

What if we want to predict a class, not a number?

- Change the shape of function: Logistic/Sigmoid function

$$
f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}}
$$

Does not add parameters

Logistic Regression

What if we want to predict a class, not a number?

- Change the shape of function: Logistic/Sigmoid function

$$
f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}}
$$

- Is the mean squared error still a good loss function?
- What happens if a prediction is very far off?
- What does it mean to be "far off"

Logistic Regression

What if we want to predict a class, not a number?

- Is the mean squared error still a good loss function?
- What happens if a prediction is very far off?
- What does it mean to be "far off"

Logistic Regression

What if we want to predict a class, not a number?

- Is the mean squared error still a good loss function?
- What happens if a prediction is very far off?
- What does it mean to be "far off"
- Change the loss function: Binary Cross Entropy
- Can be penalized for "confident" but wrong predictions

$$
L(\overrightarrow{\text { pred }, ~} \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \operatorname{pred}_{\mathrm{i}}+\left(1-\mathrm{y}_{\mathrm{i}}\right) \log \left(1-\operatorname{pred}_{\mathrm{i}}\right)\right)
$$

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a)
\end{aligned}
$$

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a) \quad \text { What is } p(x, a) ?
\end{aligned}
$$

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a) \quad \text { What is } p(x, a) ?
\end{aligned}
$$

$$
\begin{gathered}
p(x, a)=a_{0}+x_{1} a_{1}+x_{2} a_{2} \\
1 \\
a_{1} \rightarrow p \\
x_{2}
\end{gathered}
$$

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a) \quad \text { What is } p(x, a) ?
\end{aligned}
$$

$$
\begin{gathered}
p(x, a)=a_{0}+x_{1} a_{1}+x_{2} a_{2} \\
\frac{1}{2} a_{0} \\
x_{1}+p \\
x_{2}
\end{gathered}
$$

Minimize the loss with respect to \vec{a}

Boundary at $p(x, a)=0$

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a) \quad \text { What is } p(x, a) ?
\end{aligned}
$$

Minimize the loss with respect to \vec{a}

Boundary at $p(x, a)=0$

Large - values of p

Logistic Regression

What if we are trying to predict a class, not a number?

$$
\begin{aligned}
& L(\vec{x}, \vec{y}, \vec{a})=-\frac{1}{N} \sum_{i=1}^{N}\left(y_{i} \log \left(f_{S}(p(x, a))\right)+\left(1-y_{i}\right) \log \left(1-f_{S}(p(x, a))\right)\right) \\
& f_{S}(z)=\frac{1}{1+\mathrm{e}^{-z}} \quad z=p(x, a) \quad \text { What is } p(x, a) ?
\end{aligned}
$$

$$
p(x, a)=a_{0}+x_{1} a_{1}+x_{2} a_{2}
$$

Minimize the loss with respect to \vec{a}

Boundary at $p(x, a)=0$

Logistic Regression

What if there is a shape in the data?

$$
p(x, a)=a_{0}+x_{1} a_{1}+x_{2} a_{2}
$$

$$
\begin{aligned}
p(x, a)= & a_{0}+a_{1} x_{1}+a_{2} x_{2} \\
& +a_{3} x_{1}^{2}+a_{4} x_{2}^{2}+a_{5} x_{1} x_{2}
\end{aligned}
$$

Logistic Regression

What if there is a shape in the data?

$$
p(x, a)=a_{0}+x_{1} a_{1}+x_{2} a_{2}
$$

$$
\begin{aligned}
p(x, a)= & a_{0}+a_{1} x_{1}+a_{2} x_{2} \\
& +a_{3} x_{1}^{2}+a_{4} x_{2}^{2}+a_{5} x_{1} x_{2}
\end{aligned}
$$

Logistic Regression

1. Can use nearly the same process for fitting a curve (predicting a number) or classification
2. Minimize a defined cost function
3. Easy to add parameters if shape is unknown worry about over-fitting
4. If many inputs and complicated shapes, number of parameters necessary grows very quickly

Why use more complicated algorithms?

Neural Networks

Neural Networks

Neural Networks

Neural Networks

$$
a_{0}=-20, \quad a_{1}=15, \quad a_{2}=15
$$

Neural Networks

$O R$		
x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	1

AND
$x_{1} x_{2} y$
000
010
100
111
$a_{0}=-10, \quad a_{1}=15, \quad a_{2}=15 \quad a_{0}=-20, \quad a_{1}=15, \quad a_{2}=15$

Neural Networks

$O R$		
x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	1

$a_{0}=-10, \quad a_{1}=15, \quad a_{2}=15 \quad a_{0}=-20, \quad a_{1}=15, \quad a_{2}=15$
XOR
$\begin{array}{lll}\mathrm{X} & \mathrm{OR} \\ \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{y} \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}$

This system cannot produce XOR
(cannot make a two sided cut)

Neural Networks

Neural Networks

Neural Networks

Neural Networks

Neural Networks

$X O R$		
x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

x_{1}	x_{2}	OR	NOT AND	XOR
0	0	0	1	0
0	1	1	1	1
1	0	1	1	1
1	1	1	0	0

Neural Networks

$X O R$		
x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks

$\mathrm{X} O R$		
X_{1}	X_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks

Simple example showing that neural network can access 'highlevel' functions

To learn weights, need large training set and CPU time

Neural Networks

- Don’t add more inputs, let machine find own shape
- Ability to learn ‘any’ function
- More nodes/hidden layers allows for more complex features

Neural Networks

- Don’t add more inputs, let machine find own shape
- Ability to learn ‘any’ function
- More nodes/hidden layers allows for more complex features

Neural Networks

- Don't add more inputs, let machine find own shape
- Ability to learn 'any' function
- More nodes/hidden layers allows for more complex features

Neural Networks

- Don't add more inputs, let machine find own shape
- Ability to learn 'any' function
- More nodes/hidden layers allows for more complex features

Neural Network Review

- Neural networks act as universal function fitter
- Deep networks (many hidden layers) allow the network to pick its own features

Deep Learning

Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Deep Learning

Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Math. Control Signals Systems (1989) 2: 303-314
Mathematics of Contro Signals, and Systems
© 1989 Springer-Veriag New York inc.

Approximation by Superpositions of a Sigmoidal Function*
G. Cybenko \dagger

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities paper discusses approximation properties of other possib.

Key words. Neural networks, Approximation, Completeness.

Deep Learning

Simple Neural Network

Input Layer

Deep Learning Neural Network

Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network
Can fit any function with infinite data and infinite nodes (1 hidden layer)

Math. Control Signals Systems (1989) 2: 303-314
Mathematics of Control, Signals, and Systems
© 1989 Springer-Veriag New York inc.

Approximation by Superpositions of a Sigmoidal Function*
G. Cybenko \dagger

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities paper discusses approximation properties of other possib.
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

Deep Learning

Simple Neural Network

Deep Learning Neural Network

Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Can fit any function with infinite data and infinite nodes

Math. Control Signals Systems (1989) 2: 303-314

> | Mathematics of Control, |
| :--- |
| Signals, and Systems |
| o 1989 Sppinger-Veraga Now Yorkinc. |

Going deeper rather than wider learns nonlinearities with fewer parameters

Approximation by Superpositions of a Sigmoidal Function*
G. Cybenko \dagger

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities paper discusses approximation properties of other possib.

Key words. Neural networks, Approximation, Completeness.

Deep Learning

Part of the deep learning revolution is end-to-end learning

Machine Learning

Deep Learning

Pic Credit: Xenonstack | Machine Learning vs Deep Learning

End-To-End Learning

This data is not currently linearly separable
Cartesian coordinates

End-To-End Learning

This data is not currently linearly separable

Cartesian coordinates

- A simple coordinate transformation makes this a linear separable problem
- Hard to come up with transformations in high dimensions
- Use physics insights for collider variables

Quick interlude

- Going to get into collider machine learning soon
- Any questions so far?
- Examine metric to compare classifiers

How to quantify a classifier

If we want to compare the performance of a classifier, one common option is the Receiver Operating Characteristic (ROC) Curve

How to quantify a classifier

If we want to compare the performance of a classifier, one common option is the Receiver Operating Characteristic (ROC) Curve

How to quantify a classifier

If we want to compare the performance of a classifier, one common option is the Receiver Operating Characteristic (ROC) Curve

How to quantify a classifier

If we want to compare the performance of a classifier, one common option is the Receiver Operating Characteristic (ROC) Curve

How to quantify a classifier

If we want to compare the performance of a classifier, one common option is the Receiver Operating Characteristic (ROC) Curve

AUC $=1.0$ is perfect, this is not attainable for most problems

Machine learning particle physics

At the LHC

> Can identify and measure photons, electrons, muons, and things made of quarks

Neutrinos (and some BSM particles) escape detection

Beams travel in $\pm z$ direction, no momentum in (x, y) plane

Machine learning particle physics

At the LHC

Can identify and measure photons, electrons, muons, and things made of quarks

Neutrinos (and some BSM particles) escape detection

Beams travel in $\pm z$ direction, no momentum in (x, y) plane

Machine learning particle physics

At the LHC

Can identify and measure photons, electrons, muons, and things made quarks

Neutrinos (and some BSM particles) escape detection

Beams travel in $\pm z$ direction, no momentum in (x, y) plane

Machine learning particle physics

At the LHC

Can identify and measure photons, electrons, muons, and things made quarks

Energy and

momentum vector

Neutrinos (and some BSM particles) escape detection

Beams travel in $\pm z$ direction, no momentum in (x, y) plane

Missing momentum in
(x, y) plane

Machine learning particle physics

At the LHC

Can identify and measure photons, electrons, muons, and things made of quarks

Neutrinos (and some BSM

 particles) escape detectionBeams travel in $\pm z$ direction, no momentum in (x, y) plane

Energy and momentum vector
jets (b-jets)

Which heavy particle decayed to the final state particles?

Missing momentum in (x, y) plane

Deep learning in HEP

ARTICLE

Received 19 Feb 2014 | Accepted 4 Jun 2014 | Published 2 Jul 2014 DOI: 10.1038/ncomms5308
Searching for exotic particles in high-energy physics with deep learning
P. Baldi¹, P. Sadowski ${ }^{1}$ \& D. Whiteson ${ }^{2}$
[1402.4735]

One of first papers to show deep learning outperforming standard techniques in HEP Compares shallow and deep networks on raw and high-level features

Deep learning in HEP

21 raw features for
semi-leptonic channel
Not much separation in individual features

Deep learning in HEP

Deep learning in HEP

11 million training examples 1 hidden layer shallow network 5 layer deep network

Table 1 | Performance for Higgs benchmark.

Technique	Low-level	High-level	Complete
AUC			
BDT	$0.73(0.01)$	$0.78(0.01)$	$0.81(0.01)$
NN	$0.733(0.007)$	$0.777(0.001)$	$0.816(0.004)$
DN	$0.880(0.001)$	$0.800(<0.001)$	$0.885(0.002)$

Discovery significance

NN	2.5σ	3.1σ	3.7σ
DN	4.9σ	3.6σ	5.0σ

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

11 million training examples 1 hidden layer shallow network 5 layer deep network

Table 1 | Performance for Higgs benchmark.

Technique	Low-level	High-level	Complete
AUC	$0.73(0.01)$	$0.78(0.01)$	$0.81(0.01)$
BDT	$0.733(0.007)$	$0.777(0.001)$	$0.816(0.004)$
NN	$0.880(0.001)$	$0.800(<0.001)$	$0.885(0.002)$
DN			
Discovery significance			
NN	2.5σ	3.1σ	3.7σ
DN	4.9σ	3.6σ	5.0σ

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

Table 1 | Performance for Higgs benchmark.

11 million training examples 1 hidden layer shallow network

Technique
Low-level
High-level
Complete

Technique	Low-level	High-level	Complete
AUC			
BDT	$0.73(0.01)$	$0.78(0.01)$	$0.81(0.01)$
NN	$0.733(0.007)$	$0.777(0.001)$	$0.816(0.004)$
DN	$0.880(0.001)$	$0.800(<0.001)$	$0.885(0.002)$
Dicovery significance		3.1σ	3.7σ
NN	2.5σ	3.6σ	5.0σ
DN	4.9σ		

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

11 million training examples 1 hidden layer shallow network

 5 layer deep network| | Liscovery sign ficance | | |
| :---: | :---: | :---: | :---: |
| NN | 2.5σ | 3.1σ | 3.7σ |
| DN | 4.9σ | 3.6σ | 5.0σ |

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

11 million training examples 1 hidden layer shallow network

 5 layer deep network

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

11 million training examples 1 hidden layer shallow network

Table 1 | Performance for Higgs benchmark.

Technique	Low-level	High-level	Complete
AUC			
BDT	$0.73(0.01)$	$0.78(0.01)$	$0.81(0.01)$
NN	$0.733(0.007)$	$0.777(0.001)$	$0.816(0.004)$
DN	$0.880(0.001)$	$0.800(<0.001)$	$0.885(0.002)$
DISCovery significance			
NN	2.5σ	3.1σ	3.7σ
DN	4.9σ	3.6σ	5.0σ

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

Table 1 | Performance for Higgs benchmark.

11 million training examples 1 hidden layer shallow network

 5 layer deep network| Technique | Low-level | High-level | Complete |
| :--- | :---: | :---: | :---: |
| AUC | | | |
| BDT | $0.73(0.01)$ | $0.78(0.01)$ | $0.81(0.01)$ |
| NN | $0.733(0.007)$ | $0.777(0.001)$ | $0.816(0.004)$ |
| DN | $0.880(0.001)$ | $0.800(<0.001)$ | $0.885(0.002)$ |
| Liscovery significance | | | |
| NN | 2.5σ | 3.1σ | 3.7σ |
| DN | 4.9σ | 3.6σ | 5.0σ |

Comparison of the performance of several learning techniques: boosted decision trees (BDT), shallow neural networks (NN), and deep neural networks (DN) for three sets of input features: low-level features, high-level features and the complete set of features. Each neural network was trained five times with different random initializations. The table displays the mean area under the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the expected significance of a discovery (in units of Gaussian σ) for 100 signal events and $1,000 \pm 50$ background events.

Deep learning in HEP

Deep learning, using raw information, can outperform physics inspired observables.

- Let the machine use all the information available

Why isn't every experimental analysis done with machine learning then?

What data should the neural networks be trained on?

What does "raw information" mean?

Looking forward

- In today's tutorial, you will learn to do linear and logistic regression, from scratch (using linear algebra packages).
- From logistic regression, you will expand to program a neural network from scratch.
- In tomorrow's lecture, we will look at recent machine learning results in HEP.
- How to represent the data
- Generalizing from Monte Carlo to real data
- How to train on unlabelled data (real data)

