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A What is Machine },
“ | Learning for? | ™

Getting information from data

i Unlabeled]
Data ;L

ISupervised Learning} {Unsupervised Learning

» Clustering
 Anomaly detection
e GANS

e EtC

* Classification
* Numerical predictions \
* Etc

 Weak supervisi %
o (Classification without labels (CWolLa)



Machine learning in High Energy Physics

Great collection of HEP machine learning resources
https://github.com/iml-wg/HEP-ML -Resources
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Machine learning in High Energy Physics

PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992

Snagging the top quark with a neural net

Howard Baer
Physics Department, Florida State University, Tallahassee, Florida 82306

Debra Dzialo Karatas
Center for Particle Physics, The University of Tezxas, Austin, Texas 78712

Gian F. Giudice
Theory Group, Department of Physics, The University of Tezas, Austin, Tezas 78712
(Received 20 December 1991)

The search for the top quark at pp colliders in the one-lepton-plus-jets channel is plagued by an
irremovable background from W-boson-plus-multijet production. In this paper, we show how the
top-quark signal can be distinguished from background in the distribution of neural network output.
By making a cut on the network output, we maximize the ratio of signal to background in a final
event sample, and compare our results with those obtained by making kinematical cuts on the data
sample. We also demonstrate the robustness of the neural network method by training the neural
network on signal events of one top mass and testing upon another.

PACS number(s): 13.85.Qk, 14.80.Dq

Great collection of HEP machine learning resources
https://github.com/iml-wg/HEP-ML -Resources



https://github.com/iml-wg/HEP-ML-Resources

Machine learning in High Energy Physics

PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992

Snagging the top quark with a neural net

Howard Baer
Physics Department, Florida State University, Tallahassee, Florida 82306

Debra Dzialo Karatas
Center for Particle Physics, The University of Tezxas, Austin, Texas 78712

arXiv.org > hep-ex > arXiv:0707.1712 Search...

High Energy Physics - Experiment
= B-Tagging at CDF and DO, Lessons for LHC

B
ev 1. Wright, for the CDF, D@ Collaborations

$a&  (Submitted on 11 Jul 2007)

ne

P The identification of jets resulting from the fragmentation and hadronization of b quarks is an important part of high-pT collider physics. The
methods used by the CDF and DO collaborations to perform this identification are described, including the calibration of the efficiencies and fake

rates. Some thoughts on the application of these methods in the LHC environment are also presented.
Comments: Proceedings of Hadron Collider Physics 2006; 6 pages, 8 figures

Great collection of HEP machine learning resources
https://github.com/iml-wg/HEP-ML -Resources
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Machine learning in High Energy Physics

PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992

B

Observation of a New Particle in the Search for the Standard
Physics Department, Florida Model Higgs Boson with the ATLAS Detector at the LHC

Deb
Center for Particle Physics, 1

Snagging the to
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The ATLAS Collaboration
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P The identification of jets resulting from the fragmentation and hadronization of b quarks is an important part of high-pT collider physics. The
methods used by the CDF and DO collaborations to perform this identification are described, including the calibration of the efficiencies and fake

rates. Some thoughts on the application of these methods in the LHC environment are also presented.

Comments: Proceedings of Hadron Collider Physics 2006; 6 pages, 8 figures

Great collection of HEP machine learning resources
https://github.com/iml-wg/HEP-ML -Resources
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Machine learning in High Energy Physics

PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992

i

Snagging the to
Observation of a New Particle in the Search for the Standard
Physics Department, Florida Model Higgs Boson with the ATLAS Detector at the LHC

Deb
Center for Particle Physics, 1

arXiv.org > hep-ex > arXiv:070

The ATLAS Collaboration

—

= B-Tagging at CDF and DO, Lessons for LHC

B
. T. Wright, for the CDF, D¢ _____

ev
8a (Submitted on 11 Jul 2007)

; TMVA 4

P The identification of jets re Toolkit for Multivari D Analvsi ith ROOT =pT collider physics. The
methods used by the CDF & oolkit for Multivariate Data Analysis wit | of the efficiencies and fake

High Energy Physics - Experim

rates. Some thoughts on th

Comments: Proceedings of H Users GUide (Bhysies/DT03030]
——
Object tagging, calibrations (systematic regression),

event-level analysis

Great collection of HEP machine learning resources
https://github.com/iml-wg/HEP-ML -Resources
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Review: Linear Regression
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Review: Linear Regression

How to fit data 10
1. Plot the data

2. Define the function
o f(x,a) =ag+ ar1x

3. Choose how to know what fits best
e a.k.a. Loss Function 0

| N
* MSE: L(z,y,d _NZ (;,a

1=1

5. Find the minimum error (loss) (cost)

OL(z,y,a)| .
oa T, N

* Apest = @ When (



Review: Linear Regression

How to fit data 10 !

1. Plot the data st X
2. Define the function 6|
Of(x,c_i):ao—l—alzzj—l—ang ” 4f
3. Choose how to know what fits best 2|
 a.k.a. Loss Function 0

| N
* MSE: L(z,y,d _NZ (;,a

1=1

5. Find the minimum error (loss) (cost)
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Review: Linear Regression

How to fit data Quadratic? 10 !

1. Plot the data st X
2. Define the function 6|
-f(x,d’):ao—l—ala:—l—ang ” 4f
3. Choose how to know what fits best 2|

 a.k.a. Loss Function 0t

N
* MSE: L(z,y,d _NZ (z;,a

1=1

5. Find the minimum error (loss) (cost)

aL(.fC, y? a’}) - O
oa T,y N

* Apest = @ When (



Review: Linear Regression

How to

Quadratic?

fit data

1. Plot the data
2. Define the function

e f(x,d) =ap+ a1x + asx

2

3. Choose how to know what fits best
e a.k.a. Loss Function

* MSE: L(z,y,d

1=1

1 N
—NZ ajza

5. Find the minimum error (loss) (cost)

* Apest = @ When (

OL(x,y,ad)

oa

_ 0)
L,y

10

8

-l —— linear

— quadratic

2 4
T
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Review: Linear Regression

| wadrakic?
How to fit data Q 10
1. Plot the data 8 X
2. Define the function 6L
'f(w75)2a0+a1x+azw2 ) 4l
3. Choose how to know what fits best ol et
) — octagonal
e a.k.a. Loss Function o=
1 & )
.MSELijv _NZ ajza 2
=1 |s that good enough??
5. Find the minimum error (loss) (cost) How many
~ parameters can we
L
* Uhest = G When (8 (:U,_)y, 9) — O) add?
oa T,y



L ogistic Regression

What it we want to predict a class, not a number?

| Ayopked




L ogistic Regression

What it we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?

B @ B XX XXX

0.0 0.2 04 06 08 1.0 ;
Observable :



L ogistic Regression

What it we want to predict a class, not a number?

What is the y-value we are trying to fit/predict?

| | |

Define one class as 1 (Signal) L XX 200006

Label

Other class as 0 (Background) Ol @es oo oo -

] ]

0.0 0.2 04 06 08 1.0 :
Observable :




Logistic Regression
What it we want to predlct a class, not a number?
What S the V- value we are trymg to f|t/predlct’?

| Define one class as 1 (Signal)
| Other class as 0 (Background)

1F X BKX XXX

Label

O X X B N -

00 0.2 04 006 08 1.0
Observable




L ogistic Regression
What it we want to predlct a class, not a number?
What S the V- value we are trymg to f|t/predlct’?

| Define one class as 1 (Signal)
| Other class as 0 (Background)

1L

| eLinear Fit?

Label

00 0.2 04 006 08 1.0
Observable



L ogistic Regression

What it we want to predlct a class, not a number?

What S the V- value we are trymg to f|t/predlct’?

| Define one class as 1 (Signal)

| Other class as 0 (Background)

| eLinear Fit?

| eRound to nearest number?

Label

1L

00 0.2 04 006 08 1.0
Observable



Logistic Regression
What it we want to predlct a class, not a number?
What S the V- value we are trymg to f|t/predlct’7

| Define one class as 1 (Signal)
| Other class as 0 (Background)

1L

| eLinear Fit?

Label

| eRound to nearest number?

| eHow does it generalize to -
| ore data? 00 02 04 06 08 L0
Observable



L ogistic Regression

What it we want to predlct a class, not a number?

What S the V- value we are trymg to f|t/predlct’7

| Define one class as 1 (Signal)
| Other class as 0 (Background)

| eLinear Fit?

Label

| eRound to nearest number?

| eHow does it generalize to
i more data”?

37

27 F

0.5 1.0 1.5
Observable

2.0



L ogistic Regression

What it we want to predict a class, not a number?

* (Change the shape of function: Logistic/Sigmoid function

1.0

1
0.8 —
fs(z) e
0.6
©
= 04




L ogistic Regression

What it we want to predict a class, not a number?

Change the shape of function: Logistic/Sigmoid function

1.0 —

0.8F

§0.6— . 1
04y : fS(Z) o 1_|_e—z

0.2}

0.0

-4 -2 0 2 4

|s the mean squared error still a good loss function?
 What happens if a prediction is very far off?

e \What does it mean to be “tar oft”

10



L ogistic Regression

What it we want to predict a class, not a number?

|s the mean squared error still a good loss function”

 \What happens if a prediction is very tar oft”

e \What does it mean to be “tar oft”

10

1F X BKX XXX

Label

2H — linear 0les ®e® @ @0

— quadratic

0 2 4 6 3 10 0.0 02 04 06 08 L0
T Observable

11



L ogistic Regression

What it we want to predict a class, not a number?

* |sthe mean squared error still a good loss function?

 \What happens if a prediction is very tar oft”
 \What does it mean to be “tar oft”
* Change the loss function: Binary Cross Entropy

 Can be penalized for “confident” but wrong predictions

N
L(pr—éd7 y7 — % Z (yz lOg predi T (1 o yl) 1Og (1 - predi))
1=1

12



L ogistic Regression

What it we are trying to predict a class, not a number?

| L@ga = <y log ( f5(p(,0))) + (1 =) log (1 - fs<p<x,a>>)>
% 0:4- . 1
0.2} . fs(z) = 1l 4e% ° T p(az, a)

-4 -2 0 2 4

13



L ogistic Regression

What it we are trying to predict a class, not a number?

1.0 —

0.8F

— 0.6}

N—

n
= 04t

0.2}

0.0

-4 -2 0 2 4

2z =p(x,a)

<yz- log ( fs(p(w.a)) ) + (1 = y) log (1 = fs(p(, a>>)>

What is p(z,a)?

™
8
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L ogistic Regression

What it we are trying to predict a class, not a number?

1.0 —

0.8F

— 0.6}

N

N—

n
= 04t
0.2}

0.0

L(Z,9,a) = —% i (yz log (fs(p(% a))) + (1 —y;) log (1 — fs(p(z, a))))

1

Tyer 2o P@d

What is p(z,a)?

10 Py T ® , ~ ® | hd T
. ..~.o. .~ ° .o e .fO..
p(x,a) = ap + 101 + 202 e e
0.8L" T2, i S e
».oo :. ‘o ‘. : ‘ °° .f O °
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L ogistic Regression

What it we are trying to predict a class, not a number?

1.0 —

0.8F

— 0.6}

N—

n
= 04t

0.2}

0.0

-4 -2 0 2 4

> <y log ( fs(p(x,a))) + (1 =y log (1 = fs (p(a, a>>)>

z =p(z,a) What is p(x,a)?

p(aja a) = ap + 1401 + T20a2

a
I 1

I a’2

10 Py |~ ..,o?' FELL L |

Minimize the loss with | .57 si, 235
respect to a el :.Ex"’:'?:.'f:: ‘-,.,,
) 0.4 '-.i.f ..‘.;" . ' "
p2f ikt T

° °
° .~ \.0 [ X ] .~ ° ° o®

Boundary at p(z,a) =0

RN SRR Vil

0.0 L=t e .
00 02 04 06 08 1.0

X1
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L ogistic Regression

What it we are trying to predict a class, not a number?

1.0 —

0.8F

— 0.6}
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n
= 04t

0.2}

0.0

-4 -2 0 2 4

L@ §.d) = —~ Y <y log ( f5(p(x,0)) ) + (1 = i) log (1 = Fs(p(, a>>)>

What is p(z,a)?

2z =p(x,a)

p(z,a) = ag + x1a1 + T202

|Large + values of py

10 . Py |~ .. , g?- ..|' :'...l

Minimize the loss with IR

0.8 ...J': o %o ..o !%..0 3

a
I 1

respect to a i a,,:.ﬂ‘.:.“ 53
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Boundary at p(z,a) =0
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L ogistic Regression

What it we are trying to predict a class, not a number?

1.0 —

0.8F

— 0.6
N

N—

n
= 04t

0.2}

0.0

L(E,5,) = i <y log (f5(p(z,0))) + (1 — yi) log (1 = fs(p(x, a>>)>

fs(z) = —

- 1l +e %

p(z,a) = ag + x1a1 + T202

I al
I a’2

2z =p(x,a)

Minimize the loss with
respectto a

Boundary at p(z,a) =0

What is p(z,a) ?

0.0
00 02 04 06 08 10
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L ogistic Regression

What f there is a shape in the data?

p(x,a) = ag + a1x1 + asxs

p(x,a) = ag + x1a1 + 202
2 2
+ a3r] + a4T5 + a5T1T2
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L ogistic Regression

What f there is a shape in the data?
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L ogistic Regression

1. Can use nearly the same process for fitting a "

curve (predicting a number) or classification
Minimize a detined cost function

Easy to add parameters if shape is unknown —
worry about over-fitting

It many inputs and complicated shapes, number ;

|  of parameters necessary grows very quickly ;

15



Neural Networks
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Neural Networks
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Neural Networks

AND
1@ (]
01® L J
0 1
X1
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Neural Networks

AND
1@ (]
01® L J
0 1
X1
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Neural Networks
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Neural Networks

apgp — —10, ay — 15, aos — 15 agp — —20, a1 — 15, as — 15

XOR
1[@® i
This system cannot
< prc:-duc:@. XOR
0@ ® (cannot make a two sided cut)

18



Neural Networks

AND
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XOR
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Neural Networks

XOR OR

19



Neural Networks
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Neural Networks

XOR OR

1@ [ 1@ [ 1@
0l@ 0 0@ [ J 01®
0 1 0 1 0
T Iy
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20 -15
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Neural Networks

1)
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]
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Neural Networks

XOR OR
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0l®
0 1 0 1 0
1
! 20
1 " 15 NOT AND
20 -15 XOR
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Neural Networks

XOR
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45)
[—
[
/<|

0@ [ ]
0 1 0 1
1 AND
-20
20
ON_TE NOT AND |10
20 -15 15 XOR
X1 X2 |[OR _NOT AND | XOR
O 010 1 0
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Neural Networks

: AND
-20
NOT AND 19 YOR
15
OR

Simple example showing that neural network can access ‘high-
level’” functions

To learn weights, need large training set and CPU time



Neural Networks

* Don't add more
iInputs, let machine
find own shape

o 1 aop
* Abillity to learn ‘any’ )
function 7 a; p

* More nodes/hidden | 2
layers allows for
more complex
features
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Neural Networks
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Neural Networks

* Don't add more
iInputs, let machine
find own shape

* Abillity to learn ‘any’
function

* More nodes/hidden
layers allows for
more complex

- ] o \ \

features : : - Learnable weights __________________E
Input Layer Hidden Layer Output Layer
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Neural Networks

* Don't add more
iInputs, let machine
find own shape

* Abillity to learn ‘any’
function

* More nodes/hidden
layers allows for
more complex
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Neural Network Review

 Neural networks act as universal function fitter
* Deep networks (many hidden layers) allow the network to
pick its own features

22



Deep Learning

Simple Neural Network Deep Learning Neural Network
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Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network
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Deep Learning

Simple Neural Network
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Math. Control Signals Systems (1989) 2: 303-314

Approximation by Superpositions of a Sigmoidal Function*

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

G. Cybenkot

Mathematics of Control,
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Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.
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positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can
be arbitrarily well approximated by continuous feedforward neural networks with
only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.
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Going deeper rather
than wider learns non-
linearities with fewer
parameters
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Deep Learning

Part of the deep learning revolution is end-to-end learning

Machine Learning

&k — 737 Il

Input Feature extraction Classification Output

Deep Learning

o — izt - Il

Input Feature extraction + Classification Output

Pic Credit: Xenonstack | Machine Learning vs Deep Learning
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End-To-End Learning

» This data is not currently linearly separable

Cartesian coordinates
\A Al

nt
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End-To-En

,» This data is not curre

Cartesian coordinates

* A simple coordinate transtormation makes this a linea

separable problem
* Hard to come up with trans

d Learning

ntly linearly separable

Polar coordinates

‘ormations in high dimensions

* Use physics insights for co

lIder variables
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Quick interlude

o (roing to get into collider
machine learning soon
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classifiers
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How to quantify a classifier

It we want to compare the performance of a
classifier, one common option is the
Receiver Operating Characteristic (ROC) Curve
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Machine learning particle physics
At the LHC

| Can identify and measure
! photons, electrons, muons, |
i and things made of quarks §

(an some BSM

i Neutrinos
escape detection |

| particles)

i Beams travel in +z direction,

| N0 momentum in (x, y) plane §
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Machine learning particle physics
At the LHC

| Can identify and measure
! photons, electrons, muons, |
 and things made of quarks |

jets (b-jets)

(and some BSM
escape detetion |

{ Neutrinos

| i - Which heavy particle :
| particles) |
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Deep learning in HEP

ARTICLE
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Searching for exotic particles in high-energy

physics with deep learning

P. Baldi!, P. Sadowski' & D. Whiteson?

[1402.4735]

T —

1+ One of first papers to show deep learning

T —
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>

b
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g

outperforming standard techniques in HEP

; Compares shallow and deep networks on raw and
| high-level teatwres
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Deep learning in HEP
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Table 1 | Performance for Higgs benchmark.

Technique Low-level High-level Complete
AUC
BDT 0.73 (0.0 0.78 (0.01) 0.81 (0.01)
NN 0.733 (0.007) 0.777 (0.001) 0.816 (0.004)
DN 0.880 (0.00M) 0.800 (<0.001) 0.885 (0.002)
Discovery significance
NN 2.50 30 3.70
DN 490 3.60 5.00

Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.
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Deep learning in HEP

Table 1 | Performance for Higgs benchmark.

Technique Low-level High-level Complete
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Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.
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Table 1 | Performance for Higgs benchmark.

Technique Low-level High-level Complete
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Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.
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trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
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Comparison of the performance of several learning techniques: boosted decision trees (BDT),
shallow neural networks (NN), and deep neural networks (DN) for three sets of input features:
low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.
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Table 1 | Performance for Higgs benchmark.
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trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.
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Table 1 | Performance for Higgs benchmark.
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Comparison of the performance of several learning techniques: boosted decision trees (BDT),
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low-level features, high-level features and the complete set of features. Each neural network was
trained five times with different random initializations. The table displays the mean area under
the curve (AUC) of the signal-rejection curve in Fig. 7, with s.d. in parentheses as well as the
expected significance of a discovery (in units of Gaussian &) for 100 signal events and

1,000 £ 50 background events.

a b
| I | | | | | | | |
1 . Ll -
0.9 ~ e, .
~™._ 1 High-level not
- o6 1. T igh-level no
S S
g 0 7 — § : ".‘ h | [ ] h
S T 0.6 e plng mUC
€ 06 R b .
8 >
(@]
o S 0.4}
o 05} .
g g
@ 0.4 —— NN lo+hi-level (AUC=0.81) — N IR DN lo+hi-level (AUC=0.88)
0.2
0.3} — NN hi-level (AUC=0.78) I s DN lo-level (AUC=0.88)
0.2 |- — NN lo-level (AUC=0.73) | ol DN hi-level (AUC=0.80) ~
1 | | 1 1 | | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Signal efficiency Signal efficiency



Deep learning in HEP

Deep learning, using raw information, can outperform

ohysics inspired observables.
e | et the machine use all the information available

Why isn't every experimental analysis done with machine
learning then”

What data should the neural networks be trained on?

What does “raw information” mean?”?
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Looking forward

n today's tutorial, you will learn to do linear and logistic
regression, from scratch (using linear algebra packages).

—-rom logistic regression, you will expand to program a
neural network from scratch.

In tomorrow'’s lecture, we will look at recent machine
learning results in HEP.

* How to represent the data
* Generalizing from Monte Carlo to real data

 How to train on unlabelled data (real data)
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