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List of resources

https://github.com/bostdiek/IntroToMachineLearning 

https://github.com/iml-wg/HEP-ML-Resources 

https://www.kaggle.com/ 

https://www.coursera.org/specializations/deep-learning 

https://github.com/bostdiek/IntroToMachineLearning
https://github.com/iml-wg/HEP-ML-Resources
https://www.kaggle.com/
https://www.coursera.org/specializations/deep-learning
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What is Machine 
Learning for?

Getting information from dataLabeled 
Data

Unlabeled 
Data

Supervised Learning Unsupervised Learning

• Classification 
• Numerical predictions 
• Etc

• Clustering 
• Anomaly detection 
• GANS 
• Etc 

Hybrid
• Weak supervision 
• Classification without labels (CWoLa)
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Machine learning in High Energy Physics

Great collection of HEP machine learning resources 
https://github.com/iml-wg/HEP-ML-Resources

https://github.com/iml-wg/HEP-ML-Resources
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Machine learning in High Energy Physics

Object tagging, calibrations (systematic regression), 
event-level analysis

[physics/0703039]

Great collection of HEP machine learning resources 
https://github.com/iml-wg/HEP-ML-Resources

https://github.com/iml-wg/HEP-ML-Resources


Review: Linear Regression
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How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 5

f(x,~a) = a0 + a1x

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!



How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 6

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!

f(x,~a) = a0 + a1x+ a2x
2



How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 6

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!

Quadratic?

f(x,~a) = a0 + a1x+ a2x
2



How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 6

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!

Quadratic?

f(x,~a) = a0 + a1x+ a2x
2



How to fit data 
1. Plot the data 
2. Define the function 

•   
3. Choose how to know what fits best 

• a.k.a. Loss Function 

• MSE:  

5. Find the minimum error (loss) (cost) 

•

Review: Linear Regression

 6

L(x, y,~a) =
1

N

NX

i=1

(f(xi,~a)� yi)
2

abest = a when

 
@L(x, y,~a)

@~a

���
x,y

= 0

!

Quadratic?

Is that good enough?  
How many 

parameters can we 
add?

f(x,~a) = a0 + a1x+ a2x
2
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Logistic Regression
What if we want to predict a class, not a number?
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Logistic Regression
What if we want to predict a class, not a number?

fS(z) =
1

1 + e�z

• Change the shape of function: Logistic/Sigmoid function 

Does not add 
parameters
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Logistic Regression
What if we want to predict a class, not a number?

fS(z) =
1

1 + e�z

• Change the shape of function: Logistic/Sigmoid function 

• Is the mean squared error still a good loss function? 
• What happens if a prediction is very far off? 
• What does it mean to be “far off”



 11

Logistic Regression
What if we want to predict a class, not a number?

• Is the mean squared error still a good loss function? 
• What happens if a prediction is very far off? 
• What does it mean to be “far off”



 12

Logistic Regression
What if we want to predict a class, not a number?

• Is the mean squared error still a good loss function? 
• What happens if a prediction is very far off? 
• What does it mean to be “far off” 

• Change the loss function: Binary Cross Entropy 
• Can be penalized for “confident” but wrong predictions
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What if there is a shape in the data?
p(x, a) = a0 + a1x1 + a2x2

+ a3x
2
1 + a4x

2
2 + a5x1x2

p(x, a) = a0 + x1a1 + x2a2

Logistic Regression
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Logistic Regression

1. Can use nearly the same process for fitting a 
curve (predicting a number) or classification 

2. Minimize a defined cost function 
3. Easy to add parameters if shape is unknown — 

worry about over-fitting 
4. If many inputs and complicated shapes, number 

of parameters necessary grows very quickly

Why use more complicated algorithms?
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a0 = �20, a1 = 15, a2 = 15

This system cannot 
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(cannot make a two sided cut)
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Simple example showing that neural network can access ‘high-
level’ functions

To learn weights, need large training set and CPU time

Neural Networks
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• Don’t add more 
inputs, let machine 
find own shape  

• Ability to learn ‘any’ 
function 

• More nodes/hidden 
layers allows for 
more complex 
features

1
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Neural Networks
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Neural Network Review
• Neural networks act as universal function fitter 
• Deep networks (many hidden layers) allow the network to 

pick its own features
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Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Deep Learning
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Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Deep Learning
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Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Deep Learning

Can fit any function 
with infinite data 

and infinite nodes 
(1 hidden layer)
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Pic Credit: Xenonstack | Simple Neural Network and Deep Neural Network

Deep Learning

Can fit any function 
with infinite data 

and infinite nodes 
(1 hidden layer)

Going deeper rather 
than wider learns non-
linearities with fewer 

parameters
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Pic Credit: Xenonstack | Machine Learning vs Deep Learning

Deep Learning

Part of the deep learning revolution is end-to-end learning
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End-To-End Learning
This data is not currently linearly separable 
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End-To-End Learning
This data is not currently linearly separable 

• A simple coordinate transformation makes this a linear 
separable problem 

• Hard to come up with transformations in high dimensions 
• Use physics insights for collider variables
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Quick interlude

• Going to get into collider 
machine learning soon 

• Any questions so far? 

• Examine metric to compare 
classifiers
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If we want to compare the performance of a 
classifier, one common option is the  

Receiver Operating Characteristic (ROC) Curve

How to quantify a classifier
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If we want to compare the performance of a 
classifier, one common option is the  

Receiver Operating Characteristic (ROC) Curve

AUC = 1.0 is perfect, this is not attainable for most problems

How to quantify a classifier
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Machine learning particle physics

Can identify and measure 
photons, electrons, muons, 
and things made of quarks

Beams travel in ±z direction,  
no momentum in (x, y) plane

Neutrinos (and some BSM 
particles) escape detection

At the LHC
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Machine learning particle physics

Can identify and measure 
photons, electrons, muons, 
and things made of quarks

Beams travel in ±z direction,  
no momentum in (x, y) plane

Neutrinos (and some BSM 
particles) escape detection

Energy and 
momentum vector

Missing momentum in 
(x, y) plane

jets (b-jets)

Which heavy particle 
decayed to the final 

state particles?

At the LHC
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• One of first papers to show deep learning 
outperforming standard techniques in HEP 

• Compares shallow and deep networks on raw and 
high-level features

[1402.4735]

Deep learning in HEP
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Invariant masses of 
intermediate sates

mjj m`⌫mjjj mj`⌫

mbb mWb mWbb

21 raw features for 
semi-leptonic channel 

Not much separation in 
individual features

Deep learning in HEP
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Invariant masses of 
intermediate sates

mjj m`⌫mjjj mj`⌫

mbb mWb mWbb

Deep learning in HEP
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Deep learning in HEP

11 million training examples 
1 hidden layer shallow network 
5 layer deep network
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High-level not 
helping much
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Deep learning in HEP

Deep learning, using raw information, can outperform 
physics inspired observables. 
• Let the machine use all the information available 

Why isn’t every experimental analysis done with machine 
learning then? 

What data should the neural networks be trained on? 

What does “raw information” mean?
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Looking forward
• In today’s tutorial, you will learn to do linear and logistic 

regression, from scratch (using linear algebra packages). 
• From logistic regression, you will expand to program a 

neural network from scratch. 

• In tomorrow’s lecture, we will look at recent machine 
learning results in HEP. 
• How to represent the data 
• Generalizing from Monte Carlo to real data 
• How to train on unlabelled data (real data)


