汬Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Neutrino Lecture 1

Minerba Betancourt, Fermilab
22 July 2019

Outline

- Today:
- A quick history of neutrinos
- Basic of week interactions
- Neutrino oscillations
- Tomorrow:
- How we produce a neutrino beam
- Neutrino interactions
- Examples of nuclear effects in neutrino interactions
- Cross section measurements

Where do neutrinos come from?

- Neutrinos are the most common matter particles in the universe

- Concentrating on few neutrino interactions relevant to neutrino oscillation at the few GeV region

The Standard Model of Elementary Particles

- Is the standard model complete?
- Theory about fundamental ingredients of matter and how they interact with each other
- Everything known in this world is made of these (and the mirror images)

- Neutrino in the Standard Model has no mass
- However neutrino mass has been observed, and it is much smaller than all other particles

Neutrinos have mass

- Why is there such large gap between neutrino masses and quark masses?
- Why do quarks and leptons exhibit different behavior?
- What is the absolute mass of neutrino?

What is the symmetry between matter and antimatter?

- Physics theorize that the big bang created equal amounts of matter and antimatter
- When corresponding particles of matter and antimatter meet, they annihilate one another

- But somehow we are still here and antimatter, for most part, has vanished
- Neutrinos could help to explain why the universe has more matter than antimatter!

How did we discover neutrinos?

- Radioactivity: Nucleus emits particle due to nuclear instability
- While studying the beta decay, the energy did not seem to be conserved in beta decay?
- We know energy is always conserved
- Energy can neither be created nor destroyed only can be transformed into a different form
- In I930, Pauli postulated the neutrino

Dear Radioactive Ladies and Gentlemen,
I have done a terrible thing.
I have postulated a particle that cannot be detected

The Discovery of Anti-Neutrino (1956)

- Artificially produced neutrinos from nuclear reactors

1995 Nobel Prize

- Emits around 10 trillion anti-neutrinos per $\mathrm{cm}^{2} / \mathrm{s}$ - Inverse Beta decay

$$
\bar{\nu}_{e}+p \rightarrow e^{+}+n
$$

The Discovery of the Muon Neutrino

Nobel Prize

Blased on a drawing in Scientific American, March 1963.

1988 Nobel prize for the neutrino beam method and the demonstration of the doublet structure of leptons through the discovery of the muon neutrino

The Solar Neutrino Problem (1968)

- Nuclear reactions in the core of the sun produce Ve - In I968, Ray Davis's HomeStake experiment measured the Ve that arrives at earth using a huge tank of cleaning fluid solar neutrino+chlorine atom->electron+argon atom

2002 Nobel Prize

- Davis published the first results indicating that only $\mathrm{I} / 3$ of the neutrinos were observed, i.e. the solar neutrino problem

The Atmospheric Neutrino Anomaly

- Cosmic rays hit the earth isotropically
- People expected:

$$
\frac{\Phi_{\nu_{\mu}}(U p)}{\Phi_{\nu_{\mu}}(\text { Down })}=1
$$

- However, Super-Kamiokande found

$$
\frac{\Phi_{\nu_{\mu}}(U p)}{\Phi_{\nu_{\mu}}(\text { Down })}=0.54 \pm 0.04
$$

- In 1998 Super-Kamionkande announces the discovery of neutrino oscillation

2015 NOBEL PRICE in PHYSICS

"For the greatest benefit to mankind"
 ayfed Voldel
 2015 NOBEL PRIZE IN PHYSICS Takaaki Kajita Arthur B. McDonald

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Discovery of Tau Neutrino (2000)

*Fermilab

DONUT Detector

DONUT Detector for direct observation of tau neutrinos $\left(\boldsymbol{V}_{\tau}\right)$

Steel shield to
block particles block parbictes
other than dener inan
neutrinos

Weak-Isospin Eigenstates, mass eigenstates and mixing

- In the SM, there is a weak Isospin Iw that is conserved until the Higgs develops a nonzero vacuum expectation value
- Particles are given the following Iw assignments

$$
\begin{aligned}
& \frac{I_{W 3}}{+1}\left(\begin{array}{l}
W^{+} \\
0 \\
-1
\end{array}\binom{W^{0}}{W^{-}}, \begin{array}{c}
\frac{I_{W 3}}{+1 / 2}\binom{v_{L e}^{0}}{{ }_{-1 / 2}^{0}} \quad\binom{v_{L \mu}^{0}}{e_{L}^{0}} \\
\mu_{L}^{0}
\end{array}\right) \quad\binom{v_{L \tau}^{0}}{\tau_{L}^{0}}, \frac{I_{W 3}}{0} e_{R}^{0} \\
& \mu_{R}^{0}
\end{aligned} \tau_{R}^{0}
$$

The W - lepton coupling conserves I_{W}.

- With

$$
\ell_{L}^{0} \equiv\left[\begin{array}{c}
e_{L}^{0} \\
\mu_{L}^{0} \\
\tau_{L}^{0}
\end{array}\right] \equiv\left[\begin{array}{c}
\ell_{L e}^{0} \\
\ell_{L \mu}^{0} \\
\ell_{L \tau}^{0}
\end{array}\right] \quad \text { and } \quad v_{L}^{0} \equiv\left[\begin{array}{c}
v_{L e}^{0} \\
v_{L \mu}^{0} \\
v_{L \tau}^{0}
\end{array}\right]
$$

The Lagrangian

- The W-lepton coupling is

$$
\begin{aligned}
& \left.\begin{array}{c}
\text { Semi-weak } \\
\text { coupling }
\end{array}\right\} \\
& \mathcal{L}_{S M}=-\frac{g}{\sqrt{2}}\left(\bar{\ell}_{L}^{0} \gamma^{\lambda} \boldsymbol{v}_{L}^{0}\right) W_{\lambda}{ }^{-}+\text {h.c. }
\end{aligned}
$$

- When the lepton masses are turned on, the charged lepton weak-isosping eigenstates are linear combinations of the charged lepton mass eigenstates

$$
\begin{gathered}
\ell_{L, R}^{0}=A_{L, R}^{\ell} \ell_{L, R} 3 \times 3 \text { matrices } \\
\left\{\begin{array}{c}
\text { Column vectors including } \\
\text { the } 3 \text { generations }
\end{array}\right.
\end{gathered}
$$

The Lagrangian

$$
\begin{gathered}
\mathcal{L}_{S M}=-\frac{g}{\sqrt{2}}\left(\bar{\ell}_{L}^{0} \gamma^{\lambda} v_{L}^{0}\right) W_{\lambda}^{-}+h . c .=-\frac{g}{\sqrt{2}}\left(\overline{A_{L} \ell_{L}} \gamma^{\lambda} v_{L}^{0}\right) W_{\lambda}^{-}+h . c . \\
=-\frac{g}{\sqrt{2}}(\bar{\ell}_{L} \gamma^{\lambda} \underbrace{\left.A_{L}^{+} v_{L}^{0}\right) W_{\lambda}^{-}+h . c .} \\
\end{gathered}
$$

- The interaction is written in terms of the charged lepton mass eigenstates, but not the neutrino mass eigenstates

The Lagrangian

Explicitly -

$$
\mathcal{L}_{S M}=-\frac{g}{\sqrt{2}} \sum_{\substack{\alpha=e, \mu, \tau \\ i=1,2,3}}\left(\bar{\ell}_{L \alpha} \gamma^{\lambda} U_{\alpha i} v_{L i} W_{\lambda}{ }^{-}+\bar{v}_{L i} \gamma^{\lambda} U_{\alpha i}{ }^{*} \ell_{L \alpha} W_{\lambda}{ }^{+}\right)
$$

- We can use this form of the SM IvW interaction to derivate the probability for neutrino oscillation

Standard Model Neutrino Interactions

- Lagrangian for electroweak interactions:

$$
\begin{aligned}
& L_{\mathrm{int}}=i \frac{g}{\sqrt{2}}\left[j_{\mu}^{(+)} W^{\mu}+j_{\mu}^{(-)} W^{\mu+}\right]+i\left[g \cos \theta_{W} j_{\mu}^{(3)}-g^{\prime} \sin \theta_{W} j_{\mu}^{(Y / 2)}\right] Z^{\mu}+ \\
& +i\left[g \sin \theta_{W} j_{\mu}^{(3)}+g^{\prime} \cos \theta_{W} j_{\mu}^{(Y / 2)}\right] A^{\mu}
\end{aligned}
$$

- First term: charged current interactions $\left(\mathrm{W}^{+}, \mathrm{W}^{-}\right.$exchange)
- Second term: neutral current interactions (Z^{0} exchange)
- Third term: electromagnetic interactions (photon exchange)
- Electron charge: $e=g \sin \theta_{W}=g^{\prime} \cos \theta_{W}$

Charged Current (CC) interactions via a W-boson

Neutral Current (NC) interactions via a Z-boson

Neutrino Mass and Leptonic Mixing

- There is some spectrum of 3 neutrino mass and eigenstates

$$
\text { When } \mathbf{W}^{+} \rightarrow \ell_{\alpha}^{\ell_{\alpha}^{+}+\ell_{\alpha} \equiv \mathrm{e}, \ell_{\mu} \equiv \mu, \ell_{\tau} \equiv \tau}
$$

the produced neutrino state $\left|v_{\alpha}\right\rangle$ is

Neutrino Oscillations

- Interaction eigenstate (produced by weak interactions)
- Mass eigenstate (eigenstate of the Hamiltonian)

$$
\begin{gathered}
\mathcal{H}\left|\nu_{i}\right\rangle=E_{i}\left|\nu_{i}\right\rangle \\
\left|\nu_{\alpha}\right\rangle=\sum_{i=1}^{n} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& \nu_{\alpha}=\sum_{i} U_{\alpha i} \nu_{i} \quad \text { Field } \psi \text { annihilates state }|\Psi\rangle \\
& \left|\nu_{\alpha}\right\rangle=\nu_{\alpha}^{\dagger}|0\rangle=\sum_{i} \nu_{i}^{\dagger} U_{\alpha i}^{*}|0\rangle=\sum_{i} U_{\alpha i}^{*}\left|\nu_{i}\right\rangle
\end{aligned}
$$

- After producing a neutrino in a well defined flavor, it evolves like

$$
\left|\nu_{\alpha}(t)\right\rangle=\sum_{i=1}^{n} U_{\alpha i}^{*}\left|\nu_{i}(t)\right\rangle
$$

- We also detect it in a defined flavor, so the amplitude we measure is

$$
A_{\alpha \beta}(t)=\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle
$$

Neutrino Oscillations

$$
\begin{gathered}
A_{\alpha \beta}(t)=\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle \\
A_{\alpha \beta}(t)=\sum_{i=1}^{n} \sum_{j=1}^{n} U_{\alpha i}^{*} U_{\beta j}\left\langle\nu_{j} \mid \nu_{i}(t)\right\rangle
\end{gathered}
$$

- The hamiltonian is related to the time evolution operator, so

$$
\left|\nu_{i}(t)\right\rangle=e^{-i E_{i} t}\left|\nu_{i}(0)\right\rangle
$$

- Neutrinos are relativistic

$$
\begin{array}{r}
E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}} \simeq p+\frac{m_{i}^{2}}{2 E} \\
A_{\alpha \beta}(t)=\left\langle\nu_{\beta} \mid \nu_{\alpha}(t)\right\rangle=U_{\alpha i}^{*} U_{\beta j}\left\langle\nu_{j}\right| e^{-i E_{i} t}\left|\nu_{i}\right\rangle
\end{array}
$$

Isolated an overall phase

$$
=e^{-i p t} U_{\alpha i}^{*} U_{\beta i} \exp \left(-i \frac{m_{i}^{2} t}{2 E}\right) \quad \begin{array}{r}
\text { Got lazy and stopped writir } \\
\text { Used orthogonality cor } \\
\left\langle\nu_{j} \mid \nu_{i}\right\rangle=\delta_{i j}
\end{array}
$$

Neutrino Oscillations

- Let's isolate another overall phase

$$
A_{\alpha \beta}=e^{-i\left(p t+m_{1}^{2} t / 2 E\right)} U_{\alpha i}^{*} U_{\beta i} \exp \left(-i \frac{\Delta m_{i 1}^{2} t}{2 E}\right)
$$

- To make it simpler, consider two neutrinos (say V_{e} and V_{μ})

$$
U=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

$$
P\left(\nu_{\mu} \rightarrow \nu_{e} ; L\right)=\left|A_{\mu e}(L)\right|^{2}=4 c_{\theta}^{2} s_{\theta}^{2} \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)
$$

Neutrino Oscillations

$$
P\left(\nu_{\mu} \rightarrow \nu_{e} ; L\right)=\left|A_{\mu e}(L)\right|^{2}=4 c_{\theta}^{2} s_{\theta}^{2} \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right)
$$

$$
\Delta \mathrm{m}^{2}=2.3 \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} 2 \theta=0.9, \mathrm{~L}=810 \mathrm{~km}
$$

The probability of producing v_{μ} and detect v_{e} really oscillates!

Neutrino Oscillations

- For the three families there are 3 mixing angles, 2 mass splitting and one complex phase

$$
U=\left[\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right]
$$

- The components of U involve $\theta_{13}, \theta_{23}, \theta_{12}, \Delta^{2} m_{13}, \Delta^{2} m_{23}, \Delta^{2} m_{12}, \delta$

Probability of $\mathrm{v}_{\mu} \rightarrow>\mathrm{V}_{e}$ Oscillation in Vacuum

$$
\begin{align*}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) & =s_{23}^{2} \sin ^{2} 2 \theta_{13} \sin ^{2} \frac{\Delta m_{31}^{2} L}{4 E}+c_{13}^{2} c_{23}^{2} \sin ^{2} 2 \theta_{12} \sin ^{2} \frac{\Delta m_{21}^{2} L}{4 E} \\
& +8 c_{13}^{2} s_{13} c_{12} s_{12} s 23 c_{23} \sin \frac{\Delta m_{21}^{2} L}{4 E} \sin \frac{\Delta m_{31}^{2} L}{4 E} \cos \left(\frac{\Delta m_{32}^{2} L}{4 E}+\delta\right) \\
& -2 s_{12}^{2} s_{23}^{2} \sin ^{2} 2 \theta_{13} \sin \frac{\Delta m_{21}^{2} L}{4 E} \sin \frac{\Delta m_{31}^{2}}{4 E} \cos \frac{\Delta m_{32}^{2} L}{4 E} \\
& +4 c_{13}^{2} s_{12}^{2} s_{13} s_{23}\left(s_{23} s_{13} s_{12}-2 c_{12} c_{23} \cos \delta\right) \sin ^{2} \frac{\Delta m_{21}^{2} L}{4 E} \tag{2.8}
\end{align*}
$$

Is there a reason behind the masses and mixing?

$$
V_{M N S} \sim\left(\begin{array}{lll}
0.8 & 0.5 & 0.2 \\
0.4 & 0.6 & 0.7 \\
0.4 & 0.6 & 0.7
\end{array}\right)
$$

$$
V_{C K M} \sim\left(\begin{array}{ccc}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{array}\right)
$$

- Lepton mixing is very different from quark mixing

What do we know?

- The probability of a neutrino V_{μ} transforming into a V_{e}

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\sum_{j} U_{\beta j} e^{-i \frac{\Delta m_{j}^{2} L}{2 E}} U_{\alpha j}\right|^{2}
$$

$$
\left[\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right]=U^{*}\left[\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right]
$$

- where the mixing matrix has 3 mixing angles and one phase

$$
U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{array}{ccc}
\text { Atmospheric+Accelerator } & \text { Reactor+Accelerator } & \text { Solar+Reactor } \\
\Delta m_{32}^{2} \sim 2.5 \times 10^{-3} \mathrm{eV}^{2} & \theta_{13} \sim 9^{\circ} & \delta m_{21}^{2} \sim 8 \times 10^{-5} \mathrm{eV}^{2} \\
\theta_{23} \sim 45^{\circ} & \delta_{C P}=? & \theta_{12} \sim 34^{\circ}
\end{array}
$$

Remaining Questions

- Is there CP violation in the lepton sector?
- May explain matter-antimatter asymmetry
- What is the mass hierarchy? (sign of Δm_{32}^{2})
- Important to be able to understand the reach of experiments that study whether neutrinos are their own antiparticle or not
- Is θ_{23} maximal?
- Is there a fourth "sterile neutrino"?

Remaining Questions

- Is the mass hierarchy "normal" or "inverted"?

Addressing the Remaining Questions

- Is there CP violation in the lepton sector $\quad P\left[\nu_{\mu} \rightarrow \nu_{e}\right] \neq P\left[\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right]$?
- What is the mass hierarchy? (sign of Δm_{32}^{2})

Beam of ν_{μ}

Neutrino beam produce
mainly v_{μ} and small
component of v_{e}
$\phi \times \sigma \times$ Nuclear Effects

Far Detector

$$
P\left[\nu_{\mu} \rightarrow \nu_{e}\right] \neq P\left[\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right] ?
$$

$\phi^{\prime} \times \sigma \times$ Nuclear Effects $\times P_{\nu_{\mu} \rightarrow \nu_{e}}$

Nuclear model

- Use simulations to extrapolate from near detector to far detector $\sigma_{v \mu} \longrightarrow \sigma_{v e}$
- We definitely need a nuclear model to convert from produced to detected energy spectra and topologies in the near and the far detectors

Where is the Far and Near Detector?

Neutrinos make the journey from Fermilab to northern Minnesota

Illinois Wisconsin Minnesota

Long-baseline Experiments: What can we learn?

- Use a high intensity beam of neutrinos from Fermilab
- Construct detectors at far locations: MINOS+ at 735 Km (ended data-taking), NOvA at 810 km (taking data) and DUNE at 1300 km (in design)

$$
P\left[\nu_{\mu} \rightarrow \nu_{e}\right] \neq P\left[\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right] ?
$$

Electron Neutrinos Topologies at Different Detectors

Electron Neutrino from Gargamelle (1978)

Electron Neutrino from Liquid Argon

```
v. CC candidate event
```

Distance from start

坓Fermilab

Searching for \mathbf{v}_{μ} Disappearance

- In long baseline experiment, we compare a prediction obtained from Near Detector data with a Far Detector measurement

MINOS Experiment

- Near and Far detectors
- Steel planes (2.54 cm), magnetized detector
- Alternating with planes of scintillator strips
- Near detector: I ton
- Far detector: 5.4 kton

NOvA Experiment

- Far detector is 14 ktons, sits at Minnesota
- Near Detector is 290 tons placed 300 ft underground
- Identically functionality
- Consist of plastic cells filled with liquid scintillator
- Off axis beam neutrinos

NOvA Experiment

A Neutrino Interaction from the NOvA Experiment

黄Fermilab

What do we see at the NOvA Experiment?

NOvA Experiment

V_{μ}

Total Observed	$\mathbf{1 1 3}$
Best fit prediction	121
Cosmic Bkgd.	2.1
Beam Bkgd.	1.2
Unoscillated	730

\bar{V}_{μ}	
Total Observed	$\mathbf{6 5}$
Best fit prediction	50
Cosmic Bkgd.	0.5
Beam Bkgd.	0.6
Unoscillated	266

Results

T2K Experiment

KamLAND Experiment

Day Bay Experiment

$$
\begin{aligned}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)= & 1-\sin ^{2}\left(2 \theta_{13}\right) \sin ^{2}\left(\Delta m_{\mathrm{atm}}^{2} \frac{L}{4 E}\right)- \\
& \sin ^{2}\left(2 \theta_{12}\right) \cos ^{4}\left(\theta_{13}\right) \sin ^{2}\left(\Delta m_{\mathrm{sol}}^{2} \frac{L}{4 E}\right)
\end{aligned}
$$

- Disappearance of electron antineutrinos provides clean measurement of θ_{13}

Many Experiments!

What about direct measurements of absolute mass of neutrinos ?

- When a neutrino is produced, some of the energy exchanged in the process should be spent by the non-zero neutrino mass
- The most sensitive observable is the electron energy spectrum from tritium decay

- This decay is sensitive to an effective "electron neutrino mass"
- Experiment measure the shape of the end-point of the spectrum, not the value of the end point

Figure 2: The electron energy spectrum of tritium β decay: (a) complete and (b) narrow region around endpoint E_{0}. The β spectrum is shown for neutrino masses of 0 and 1 eV .

KATRIN Experiment

- First tritium injection May 182018
- Commissioned the detector 2018

- Taking data!

Short-Baseline Neutrino Program

- Short-baseline neutrino program at Fermilab:
- Search for a fourth type of neutrino (sterile neutrino)
- Measure cross sections on liquid argon
- First time multiple liquid argon detectors are putting together: understand how systematics cancel in preparation for DUNE
arXiv:1503.01520, January 2014

DUNE (40Kton)

- MicroBooNE is running, SBND: commissioning is scheduled to start in 2020 and ICARUS: commissioning is scheduled to start in 2019

DUNE Experiment

- Build new detectors farther away (1300 km) on axis
- A longer baseline provides more matter effects enhancing the asymmetry between neutrino and antineutrino
 appearance probabilities
- DUNE will measure the mass hierarchy and search for the δ
- DUNE will constrain $\sin ^{2}\left(\theta_{13}\right), \sin ^{2}\left(\theta_{23}\right), \Delta^{2} m_{13}, \Delta 2 m_{23}$
- Has the potential to determine the θ_{23} octant
- Physics goals include
- Constrain the PMNS metric
- Search for exotic physics like NSI, CPT/Lorentz violation, dimensions and sterile neutrino

Back Slides

50
Minerba Betancourt

From Quarks

- The interaction basis

$$
\sum_{i=1}^{3} \bar{Q}_{L i} \not D Q_{L i}=\sum_{i=1}^{3} \frac{g}{\sqrt{2}}\left(\bar{u}_{L i} \gamma^{\mu} d_{L i} W_{\mu}^{+}+\text {h.c. }\right)+\ldots
$$

- The masses do not need to be diagonal

$$
\sum_{i, j=1}^{3} y_{i j} \bar{Q}_{L i} \tilde{H} u_{R j} \rightarrow \overline{\mathcal{U}}_{L} \cdot \mathbf{M}_{u} \cdot \mathcal{U}_{R}=\overline{\mathbf{u}}_{L} \cdot\left(V_{L}^{u}\right)^{\dagger} \cdot \underbrace{\mathbf{M}_{u}}_{\substack{\text { quarks in mass basis } \\ \text { (masses are diagonal) }}} \cdot V_{R}^{u} \cdot \mathbf{M}_{u}^{\text {diag }}, ~
$$

$$
\sum_{i, j=1}^{3}
$$

$$
y_{i j} \bar{Q}_{L i} H d_{R j} \rightarrow \overline{\mathcal{D}}_{L} \cdot \mathbf{M}_{d} \cdot \mathcal{D}_{R}=\overline{\mathbf{d}}_{L} \cdot\left(V_{L}^{d}\right)^{\dagger} \cdot \mathbf{M}_{d} \cdot V_{R}^{d} \cdot \mathbf{d}_{R}
$$

From Quarks

- The interaction basis

$$
\sum_{i=1}^{3} \bar{Q}_{L i} \not D Q_{L i}=\sum_{i=1}^{3} \frac{g}{\sqrt{2}}\left(\bar{u}_{L i} \gamma^{\mu} d_{L i} W_{\mu}^{+}+\mathrm{h.c.}\right)+\ldots
$$

- The mass basis

$$
\sum_{i=1}^{3} \bar{Q}_{L i} \not D Q_{L i}=\frac{g}{\sqrt{2}}\left[\overline{\mathbf{u}}_{L} \gamma^{\mu}\left(V_{L}^{u}\right)^{\dagger} V_{L}^{d} \mathbf{d}_{L} W_{\mu}^{+}+\mathrm{h.c.}\right]+\ldots
$$

CKM mixing matrix

From Quarks

- Fermion states that have a well defined mass can have mixing under weak interactions

- Same thing happens to neutrino, but we do not know the mechanism that generates neutrino masses!

