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Disappearing Gradient

Deep learning uses raw inputs, with many hidden layers
to let the machine come up with its own features.

How deep can we go before running into problems?

Deep Learning Neural Network
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Disappearing Gradient

| Sigmoid Derivative

|
, {
i

Chain rule for gradient of network involves multiple tactors of
the derivative multiplied together

Deep networks with Sigmoid activations have exponentially
hard time training early layers

Bryan Ostdiek (University of Oregon) 3



Disappearing Gradient
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Using the Rectified Linear Unit (RelLU) solves this problem.
RelLU(x) = {0 if x <=0, x if x >0}

Still has nonlinearity which allows network to
learn complicated patterns

Nodes can die (derivative always O so cannot update)

Bryan Ostdiek (University of Oregon)



Disappearing Gradient
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Leaky Rectified Linear Unit (LeakyRelLU) solves this problem.

LeakyRelLU(x) = {alpha*x if x <=0, x if x >0}

| have never had to use this in practice

Bryan Ostdiek (University of Oregon) 5



Deep learning

Deep learning trained on raw (4-vector) data out classified
shallow network and BDT on high-level variables

Give the network as much data as possible and let it learn
what it wants

|s 4-vectors the best way to represent the data”
Are there more efficient forms?

Most news coverage of deep learning is about image
recognition, can we use this?



Deep learning

 Deep learning with 4-
vectors performs well

e Fach node is a linear
combination of variables
with different units?!?!

e |s this all the information
available in the detectors?




How much information is in a jet”
[1704.08249]

e M-body phase space. For M-body phase space, we can define the coordinates of
that phase space by M — 1 transverse momentum fractions z;, forze=1,..., M — 1,
and 2M — 3 pairwise angles 6;; between particles 7 and j. The remaining

pairwise angles are then uniquely determined by the geometry of points in a plane.®

To determine all of these phase space variables, we extend the set of N-subjettinesses
that were measured in the 2- and 3-body case. In this case, the 3M — 4 observables
we measure are:

(0.5) (1) _(2) _(0.5) (1) _(2) (0.5) (1) (2) (1) (2)

{7‘1 yT1 5T1 5 To 3Ty 3Ty yee s Tap—os TAf—2 TM_Z,TM_I,TM_I} : (2.8)
Note that there are 3(M —2)+2 = 3M — 4 observables, and these will span the space
of phase space variables for generic momenta configurations, when all particles have
non-zero energy and are a finite angle from one another.



http://arxiv.org/abs/1704.08249

How much information is in a |et”?
[1/04.08249]

M-Body Discrimination
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Figure 1. Z boson jet efficiency vs. QCD jet rejection rate plot as generated by the deep neural
network. Details of the event simulation, jet finding, and machine learning are described in section 3.
The different curves correspond to the mass plus collections of observables that uniquely define M-
body phase space. Discrimination power is seen to saturate when 4-body phase space is resolved.

Including all of the 4-vectors doesn’t improve the classification
Boosted Z


http://arxiv.org/abs/1704.08249

Represent a jet as an Image

11501.05968]

Representing data: Images, early works took all of the pixels,
then unrolled them into a line

Bias nodes

€
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Calorimeter image Input layer Hidden layer 1 Hidden layer 2  Output layer

Figure 1. Graphical representation of the Artificial Neural Network (ANN).

Boosted Tops
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http://arxiv.org/abs/1501.05968

Represent a jet as an Image
[1501.05968]
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e Claims to be better than N-subjettiness, but didn’'t use whole basis
* Used different signal, so can’'t do direct comparison to last study

* Didn’t use the methods traditionally used for image recognition

Boosted Tops
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http://arxiv.org/abs/1501.05968

Represent a jet as an Image

Image classification usually uses Convolutional Layers as
opposed to fully connected (dense) layers

data =11, 2,4, 3, 2, 5, 1] filter or kernel = [1, O, -1]
convolved data = [-3, -1, 2, -2, 1]

Builds In translational invariance
Less parameters to fit

https://leonardoaraujosantos.gitbooks.io/artiticial-inteligence/
content/more_images/Convolution_schematic.gif
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http://aishack.in/tutorials/image-convolution-examples/
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Jet Images with CNNs

(1511.05190]

Convolved
Convolutions Feature Layers
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Max-Pooling

Repeat

Figure 5: The convolution neural network concept as applied to jet-images.

Boosted W

14


http://arxiv.org/abs/1511.05190

Jet Images with CNNs
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < ppr < 260 GeV and 65 GeV < mass < 95 GeV.
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http://arxiv.org/abs/1511.05190

Jet Images with CNNs round 2

[1 012.01551 ] red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

-4

pre-process

convolutional layer dense layer

. quark jet

0

"~ gluon jet

Quark vs. Gluon
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http://arxiv.org/abs/1612.01551

Jet Images with CNNs round 2

[1612.01551]

3.1

Pre-processing

The following series of data-motivated pre-processing steps were applied to the jet images:

1.

Center: Center the jet image by translating in (7, ¢) so that the total pp-weighted
centroid pixel is at (1, ¢) = (0,0). This operation corresponds to rotating and boosting
along the beam direction to center the jet.

Crop: Crop to a 33 x 33 pixel region centered at (n,¢) = (0,0), which captures the
region with n,¢ € (—R, R) for R = 0.4.

. Normalize: Scale the pixel intensities such that Zij I;; = 1 in the image, where ¢ and

j index over the pixels.

Zero-center: Subtract the mean p;; of the normalized training images from each image,
transforming each pixel intensity as I;; — I;; — pij.

Standardize: Divide each pixel value by the standard deviation o;; of that pixel value
in the normalized training dataset, I;; — I;;/(0;; + 7). A value of 7 = 107° was used
to suppress noise.

Quark vs. Gluon

17
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Jet Images with CNNs round 2

(1612.01551]
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Figure 6: SIC curve of deep convolutional network performance on Pythia jets with color Figure 8: ROC curves for the Pythia- and Herwig-trained CNNs applied to 200 GeV samples
(solid) and without color (dotted). The introduction of color becomes more helpful at higher generated with both of the generators. Remarkably, the network performance seems robust

energies, with the largest improvement on the 1000 GeV jets. to which samples are used for training.

Can start to learn physics from the results of machine learning!

Quark vs. Gluon
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Jet Representations

4-vectors of all the hadrons in a jet is an easy representation of
the data, but not necessarily efficient

Using N-subjettiness, can get good classification with more
intuition for what the machine is using in it's decisions

Images can also be used and seem to get very good
separation

Each study used a different test signal, so can't directly
compare performance

Are there other representations of the data which could be
easier for a machine to learn from?

19



Representing a jet as a tree/graph

1702.00748], [1711.02633],
1807.09088], [1810.05165],

®
9
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Bullding physics into the Machine

Adding a Lorentz Layer [1707.08966]

. ko,l ko,2 ko,N

Start with 4-vectors (not Gy — [ K11 iz ok

2V ke koo -+ kon

components of 4-vectors) Eay Kos o Kon
Learn the linear I

ki — kuj=kuqi Cij

combinations to use

. . m?(k;)
Compute Lorentz invariant L Lela; _ ( (E)pTg'%n\
quantities Sy

End with 2 fully connected layers
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Bullding physics into the Machine

Adding a Lorentz Layer [1707.08966]

. . m?(k;)
Compute Lorentz invariant - Lola / (E)pTg'%j)\
quantities 0

To make this layer have learnable features, don't encode the
metric, but leave It as weights to be updated

g = diag( 0.99 £ 0.02,
—1.01 £ 0.01,—1.01 £ 0.02, —0.99 + 0.02)

The network learns to use the Minkowskl metric!

22
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Bullding physics into the Machine (2

[1812.09722]
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Figure 1: The two-stage deep neural network architecture consists of the Lorentz Boost Network
(LBN) and a subsequent deep neural network (NN). In the LBN, the input four-vectors (E, px, py, pz)
are combined in two independent ways before each of the combined particles is boosted into
its particular rest frame, which is formed from a different particle combination. The boosted
particles are characterized by variables which can be, e.g., invariant masses, transverse momenta,
pseudorapidities, and angular distances between them. These features serve as input to the second
network designed to accomplish a particular analysis task.
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A Fair Comparison
[1902.09914]: Try to find what representations of the data

work best. Use the same training data and the same test
data for all methods
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ResNeXt
PFN
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- CNN

P-CNN
LoLa

EFN

EFP
TopoDNN
nsub+m

0.2 0.4 0.6 0.8

Signal efficienéy Es

1.0

AUC | Accuracy | 1/ep (es = 0.3) | #Parameters
CNN 0.981 | 0.930 780 610k
ResNeXt [32 0.984 | 0.936 1140 1.46M
TopoDNN 0.972 | 0.916 290 59k
Multi-body N-subjettiness 6 | 0.979 | 0.922 856 57k
Multi-body N-subjettiness 8 | 0.981 | 0.929 860 58k
RecNN 0.981 | 0.929 810 13k
P-CNN 0.980 | 0.930 760 348k
ParticleNet [45] 0.985 | 0.938 1280 498k
LBN [19] 0.981 | 0.931 860 705k
LoLa || 0.980 | 0.929 730 127k
Energy Flow Polynomials [ 0.980 | 0.932 380 1k
Energy Flow Network || 0.979 | 0.927 600 82k
Particle Flow Network ] 0.982 | 0.932 880 82k
GoaT (see text) 0.985 | 0.939 1440 25k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal efficiency of 30%. The number of trainable parameters of the model is given as
well. Performance metrics for the Goa'T meta-tagger are based on a subset of events.
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Big lransition
Discussed many difterent representations of data for
deep learning on jets

Everything was still “supervised” classification on a
labeled dataset

Must train on Monte Carlo simulated data and then
apply to real LHC data

Are there ways to train directly on real data to avoid
any mis-modeling effects?

25



Autoencoders

[1808.08979] and [1808.08992]

r- Encoder

Decoder

Lk

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional

representation, in this case 6-dim, and then decoded.

Minimize the reconstruction error
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Figure 2: Architecture of the image-based autoencoder network. The 40 x 40 images are
average-pooled to 20 x 20 images before entering the bottleneck. The dense units are first
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reduced from 400 to 100, the minimum size at the bottleneck is variable.
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Autoencoders
[1808.089/79] and [1808.08992]
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Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400 GeV gluinos (orange).
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Weak supervision / CWola

1702.00414

1801.10158

1706.09451],

11805.02664

1708.02949].

1902.02634
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Weak supervision / CWola

[1702.00414], [1/06.09451], [1708.02949],
[1801.10158], [1805.02664 |, [1902.02634]
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Transter Learning

Pre-trained networks for image classification are readily available
https://keras.io/applications/

Patterns of Local [SSFETEE .
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Output Layer
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Hidden Layer 1
Input Layer

What if we want to do something with images, but
not classification (using the same categories)?

Bryan Ostdiek (University of Oregon) 29
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Transter Learning
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Get rid of the

“classification part”
Keep the features

Freeze the layers so that
the features don't change

Bryan Ostdiek (University of Oregon)



Transter Learning
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New network has small
number of trainable
weights, can train with
limited resources

"Preprocess” our data

Bryan Ostdiek (University of Oregon) 31



One more transition

L ast section was about how to train on unlabeled data, but we
still had classifying jets/events in our minds

Machine learning can be used for many other purposes in
HEP
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GANS

Generative Adversarial
Network

Real
Samples

Latent

Space

A 18D
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D
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= A Fake
. x Samples
* Fine Tune Training
Noise

https://ddcolrs.wordpress.com/2017/07/03/generative-adversarial-networks-gan/


https://ddcolrs.wordpress.com/2017/07/03/generative-adversarial-networks-gan/

GANS

[1705.02355] and others: Fast detector simulation
>
» 0|
BPUR >R
- -
gl e SR

GEANT

[1810.11509], [1901.00875], [1907.03764] , and others: look
at phase space integration / event generation
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Conclusion

1. Neural networks are trained very similarly to fitting a
ine, define a loss and minimize it.

2. Deep learning can outperform high-level variables if
the high-level information does not capture all of the
information within the data

3. How the data is represented effects the style of network
to use, and the results

4. Training can be done on real data (unlabeled)

5. Many more applications of machine learning
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Updates to tutorial

Your results from the tutorial should be saved on your
computer. To ensure that doing a git pull does not affect your
answers, change the name of Tutorial_1.ipynb

| have added my solutions to the git lab repository, use
git pull
to download them to your computer

All of the required packages should now be in the docker
container:

docker pull ctegschool/tutorial:mltools-2.0.0
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