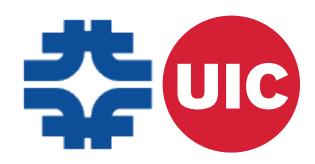
LHC results on electroweak and Higgs physics

corrinne mills (UIC+FNAL)

CTEQ @ PITT 24+25 July 2019



Introduction

- Electroweak physics has been a cornerstone of collider physics since discovery of W and Z bosons in the early 80s
 - \rightarrow Higgs boson is an inextricable part of this
- The last time I lectured at this school (2011), the Higgs boson had yet to be observed
- As the dataset has increased, focus on increased precision and search for increasingly rare processes
- Rather than trying to cover exhaustively the dynamic landscape of all measurements, focus on key examples
- Also talk about detector performance: results chosen to illustrate concepts, don't necessarily represent the state-of-the-art performance
- My career at hadron colliders: CDF (Tevatron), ATLAS, now CMS
 → I am also excited to talk about silicon detectors at the discussion sections
- Mistakes, opinions, and biases are all my own

The Large Hadron Collider, CERN

The Alps

Lac Leman

airplanes go here,

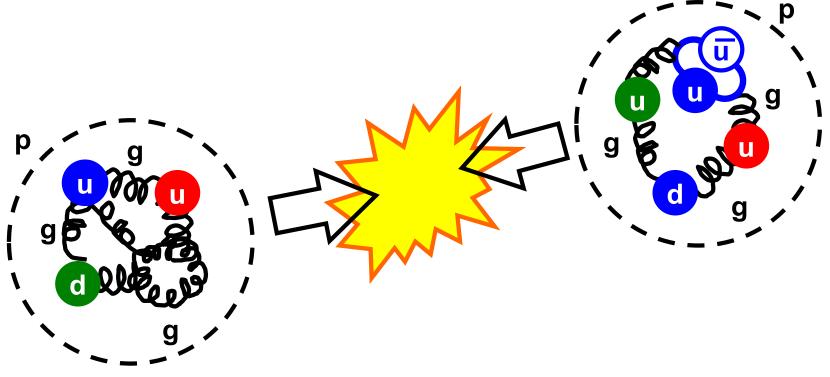
CERN

Genève

world's highest-energy particle collider pp collisions at $sqrt(s) = 7 \rightarrow 8 \rightarrow 13 \text{ TeV}$

Colliding protons

- High energies $\leftarrow \rightarrow$ small distance scales at the LHC
- Proton is not a point particle: quarks, gluons, even antiquarks
 → Most collision events gluon-gluon
- Don't know momentum carried by individual partons (p_z)
 - \rightarrow use transverse momentum (p_T)



Rapidity *y* is a Lorentz-invariant way to express the polar angle of a particle

CTEQ2011 Schellman

$$egin{array}{lll} y \equiv & rac{1}{2} igg(rac{E+p_{\parallel}}{E-p_{\parallel}} igg) \ E = & rac{1}{2} e^y \sqrt{m^2+p_T^2} \end{array}$$

Lorentz Invariant Phase Space can be written as

$$\frac{d^3p}{2E} = d\phi \ d\cos\theta \ p^2 dp = d\phi dy dp_T^2 = 2\pi dy dp_T^2$$

In frame where $p_z = 0$,

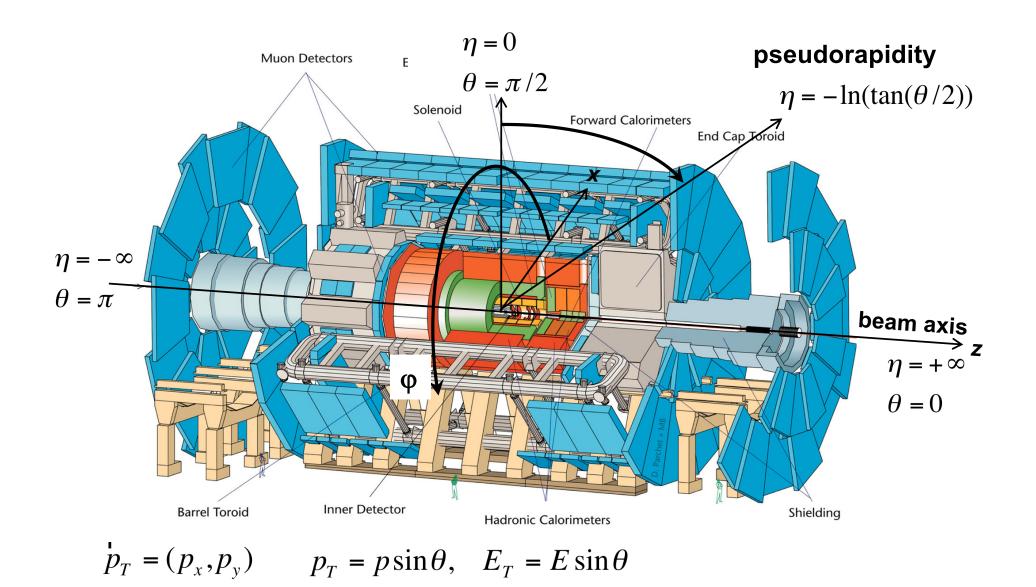
$$\delta y pprox \delta heta + \mathcal{O}(\delta heta)^3$$

equivalent to small variations in the polar angle θ .

For massless particles, the rapidity
$$\eta = -\ln(\tan\theta/2)$$

reduces to the pseudorapidity

Hadron Collider Kinematics



Collider physics units

• Energy measured in eV

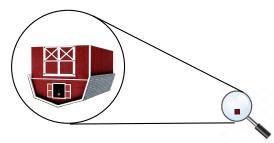
- → Energy acquired by electron accelerated through 1 Volt
- → **1 GeV** = $10^9 \text{ eV} = 1.6 \times 10^{-10}$ Joules
- The rest follows from the famous equation

$$E^2 = p^2 c^2 + m^2 c^4$$

- \rightarrow Momentum in GeV/c
- \rightarrow Mass in GeV/c²
- \rightarrow Typically set **c** = 1
- Then work with four-vectors:

$$p = (E, -p_x, -p_y, -p_z)$$

 Integrated luminosity measured in inverse femtobarn



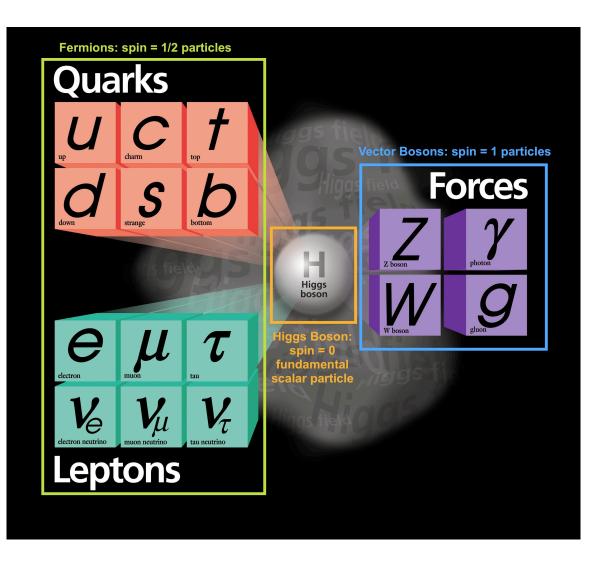
- Cross sections are measured in barns (with one barn being a very large cross section)
 - → Typical (interesting) cross sections at LHC are pico- and femto- barns
 - \rightarrow That's 10⁻¹² and 10⁻¹⁵
- Quantify "amount of data" by number of events for a process with a particular cross section

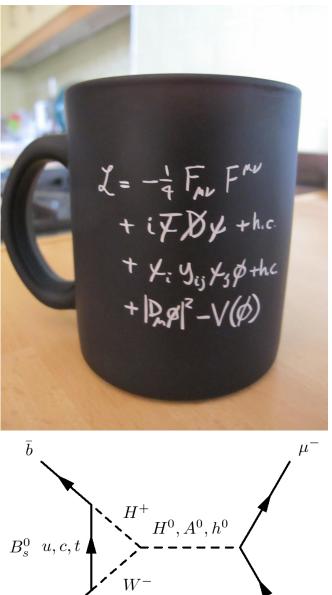
$$N = (\int \mathcal{L}dt)\sigma$$
 so $\int \mathcal{L}dt = N/\sigma$

Slide inspired by Heidi Schellman's 2011 lectures

The Standard Model: Theorist View

Fermions and bosons are building blocks, complexity is in interactions





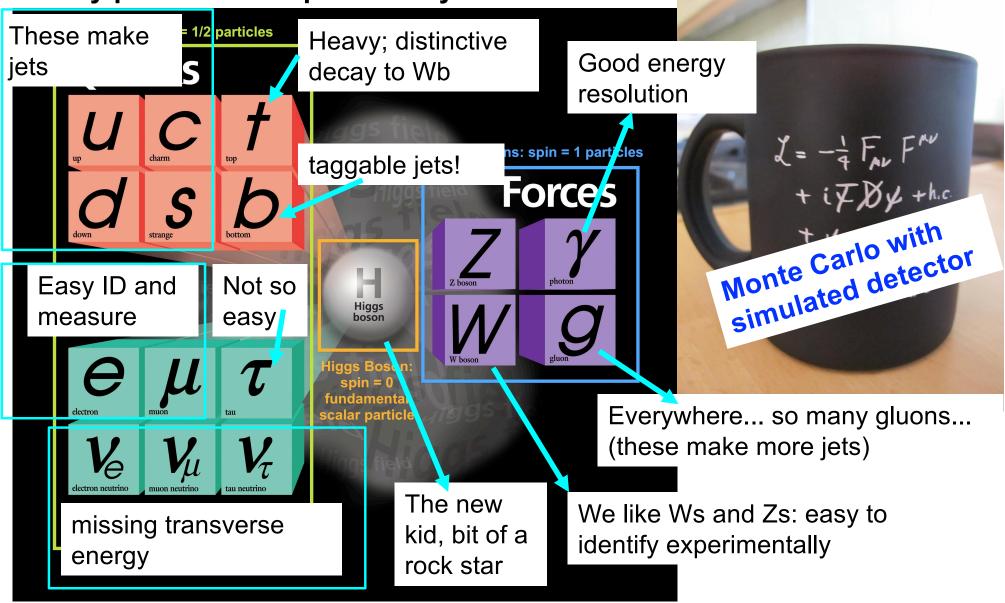
c. mills (UIC+FNAL)

s

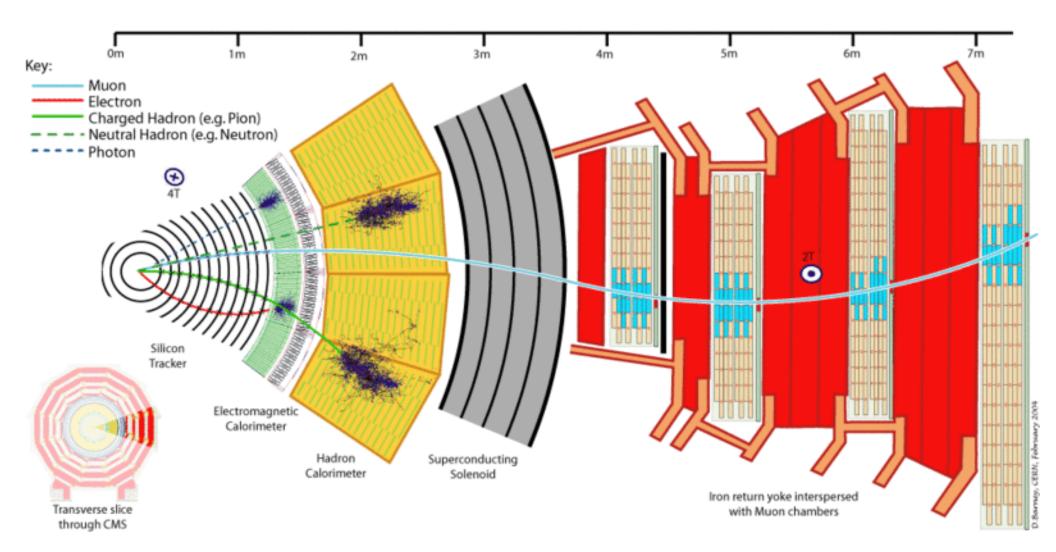
 μ^+

Hadron Collider Experimentalist's View

Every particle has a personality

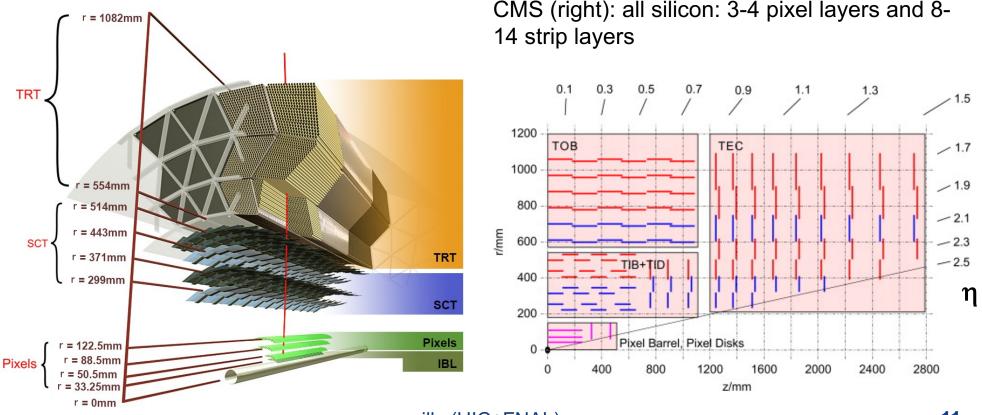


How we reconstruct particles



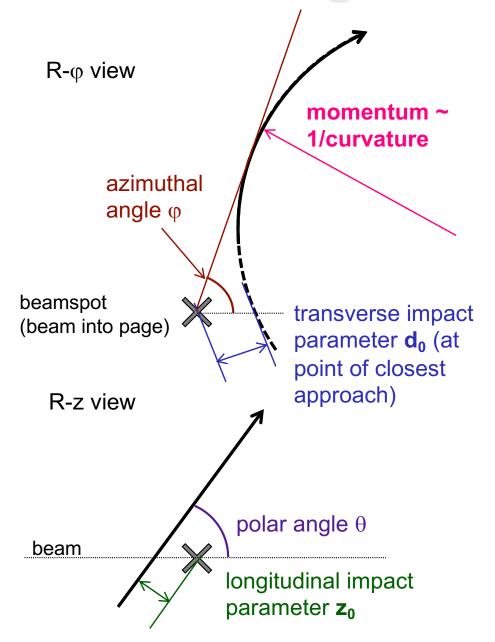
Charged particle tracking

- Radiation conditions and occupancy (granularity) requirements ⇒ silicon semiconductor detectors closest to the interaction point:
 - \rightarrow Strips: charge collection implants run the length of the detector
 - \rightarrow Pixels: segmented in 2d detector plane, typical size 100 x 150 μm^2 (current CMS)
- ATLAS (left): innermost layers silicon semiconductor (4 strip + 4 pixel), outer layers Transition Radiation Tracker (TRT): 4 mm straw tubes filled Xenon, pion/electron discrimination using x-ray photons from interstitial material

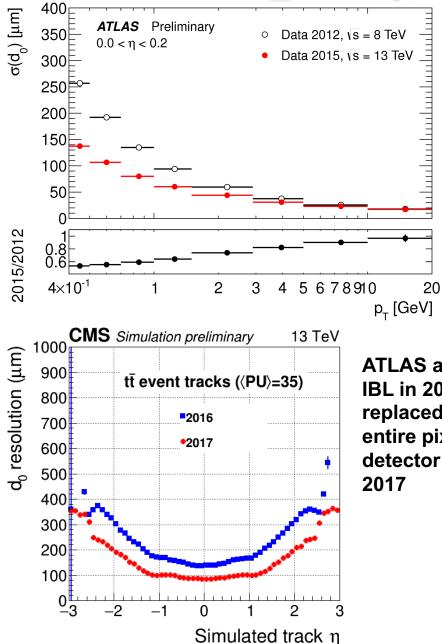


Charged particle tracking

- Tracks bend in magnetic field produced by solenoid
- Helical trajectory defined by 5 track parameters
 - \rightarrow 2 impact parameters (d₀, z₀)
 - Critical to vertexing
 - Performance determined by pitch and radius of innermost tracker layers
 - \rightarrow 2 angles (θ , φ)
 - \rightarrow curvature/momentum p
 - Performance determined by "lever arm": distance over which trajectory measured



Charged particle tracking



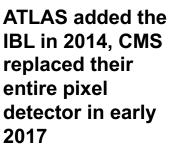
Adding a layer at smaller radius (red points) improves impact parameter resolution

→ Multiple scattering affects tracks with $p_T \lesssim 10 \text{ GeV}$

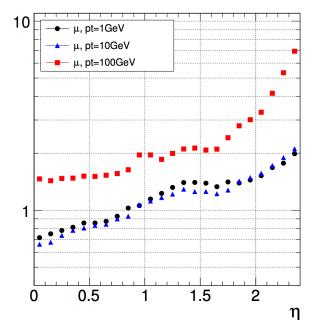
Conversely, momentum resolution gets better at lower momentum (to a point)

→ Harder to measure curvature of straighter tracks

5(δ p_t/p_t) [%]

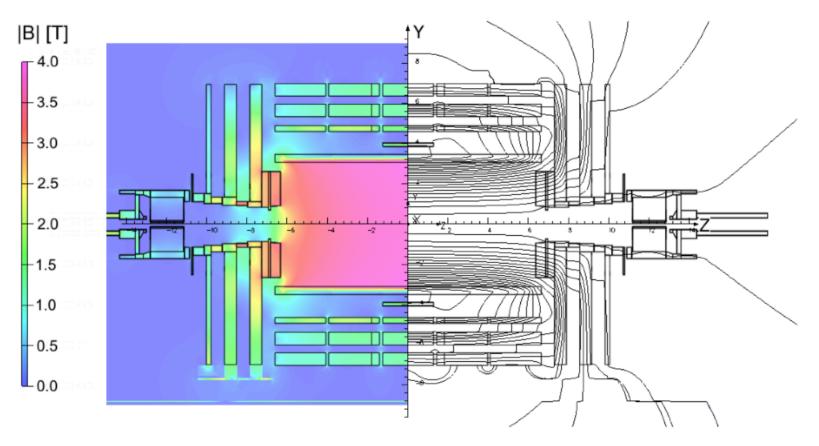


CMS simulation from detector paper



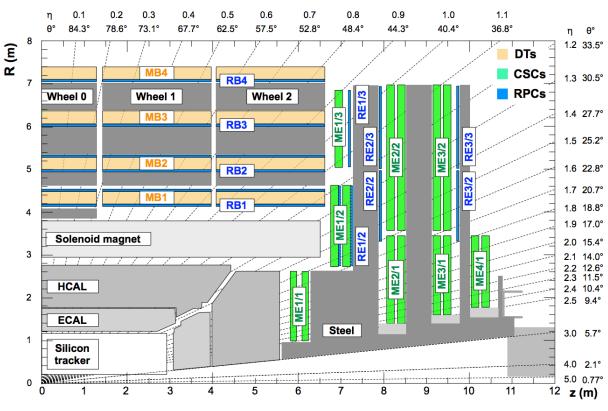
Muons and magnetic fields

- Muons traverse the entire detector: ATLAS and CMS link tracks in two detectors, each with an independent momentum measurement
 - → Solenoid: 2 Tesla, 2.4m diameter (ATLAS); 3.8 Tesla, 6m diameter (CMS)
 - \rightarrow ATLAS toroids produce magnetic field with field lines around the Z axis
 - \rightarrow CMS uses iron to direct flux return outside the solenoid, concentrating the field lines

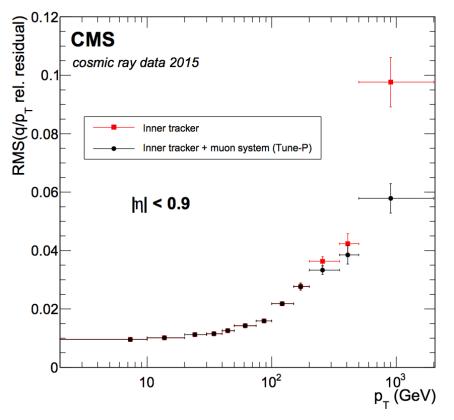


Muons and magnetic fields

- Muon detectors track charged particles using gas ionization
 - \rightarrow Lower rate and easier radiation environment but need to cover more area
- ATLAS, CMS work on similar principles; CMS described here (1306.6905)
- Drift tubes for precision: 200-300 μm single-hit resolution (~100 μm per station)
 - \rightarrow Position measured by time to drift to wire
- RPCs for speed
 - → E field tuned to operate in "avalanche" mode
 - \rightarrow ~1 cm resolution
 - → 3 ns time resolution and fast response (vs up to 400 ns for drift tubes; compare 25 ns collision spacing)
- CSCs split the difference
 - → Tolerate higher event rates in forward region
 - \rightarrow 40-150 μm resolution per station

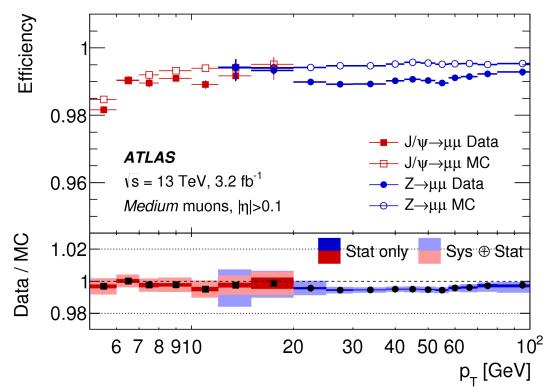


Muon performance



 Background rejection is a key feature of muons but harder to quantify: strong dependence on details of selection (number of hits, isolation, etc) Improved momentum resolution for highest-p_T muons

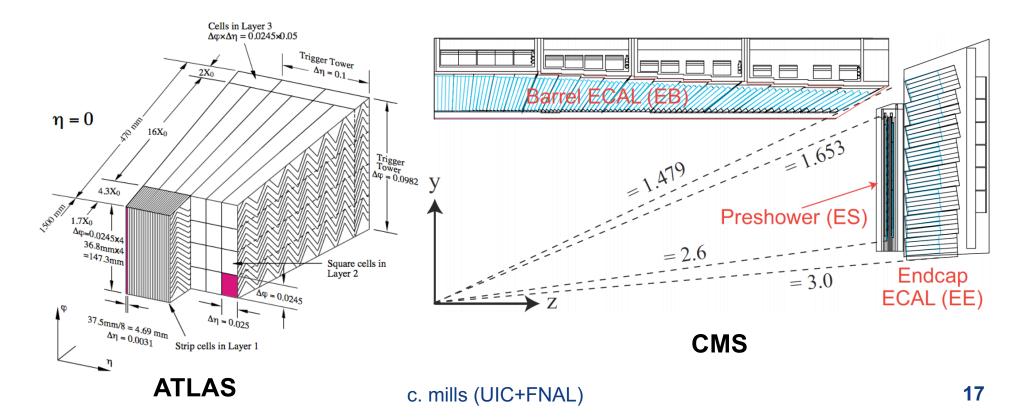
- Efficient reconstruction
 - → And well-understood: total uncertainty 1% or less
- Calibrated using two-body decays



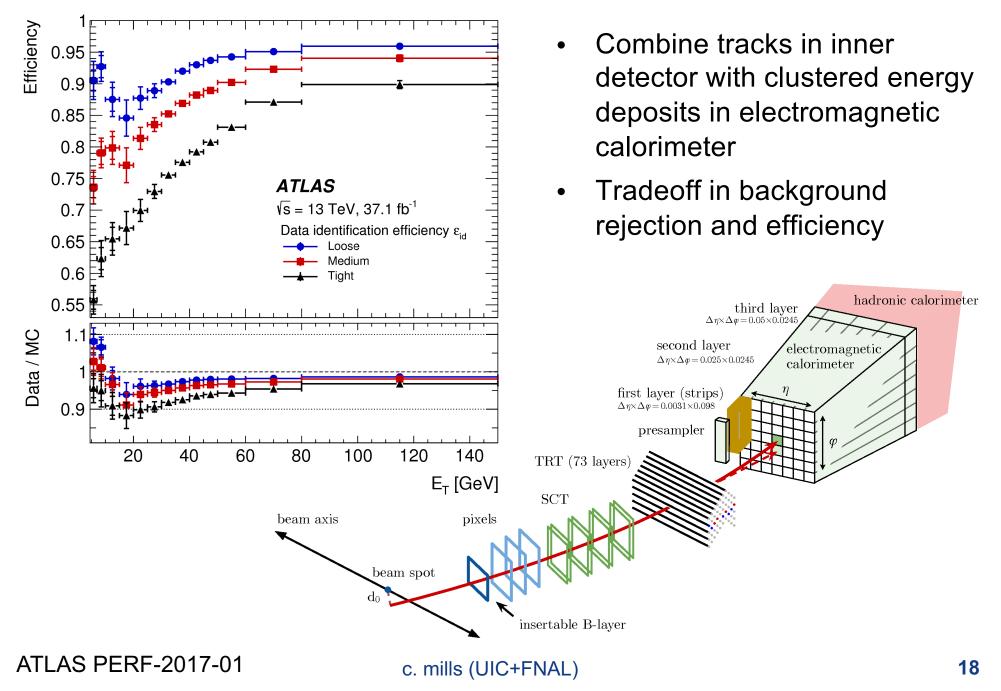
CMS 1804.04528 ATLAS PERF-2015-10

Photons, electrons, and ECALs

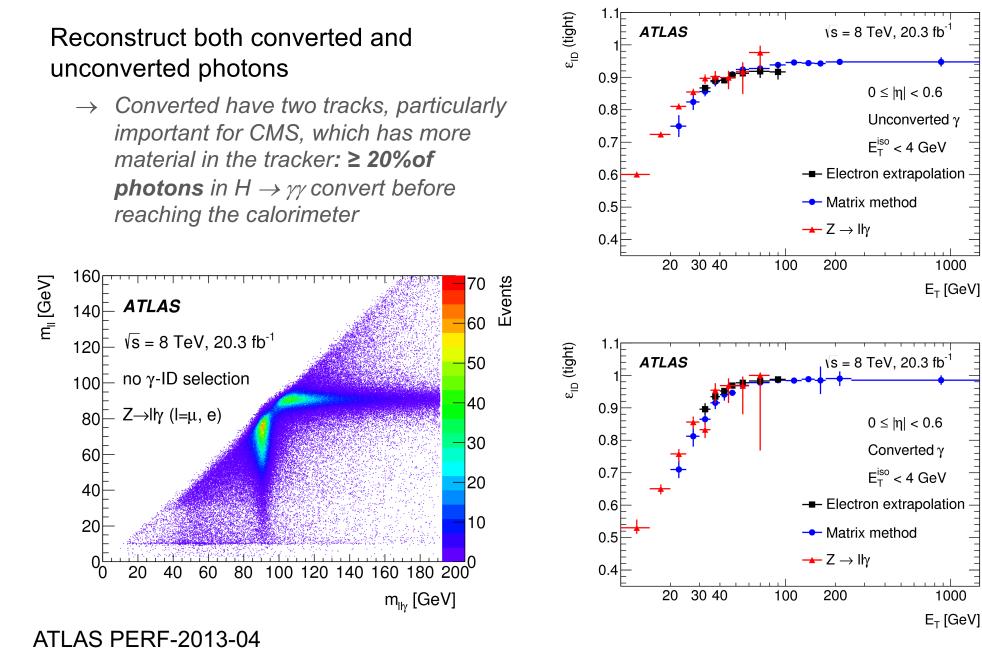
- Electromagnetic calorimeters from high-Z material (i.e. lead) to maximize electromagnetic interaction
- ATLAS and CMS made fundamentally different choices
 - \rightarrow ATLAS for background rejection ($\pi \rightarrow \gamma \gamma$ in particular) using segmentation of electrodes; liquid argon for active material (ionization signal)
 - → CMS for energy resolution: lead tungstate (PbW0₄) crystals are dense (absorber) and produce scintillation light (active material)



Electrons

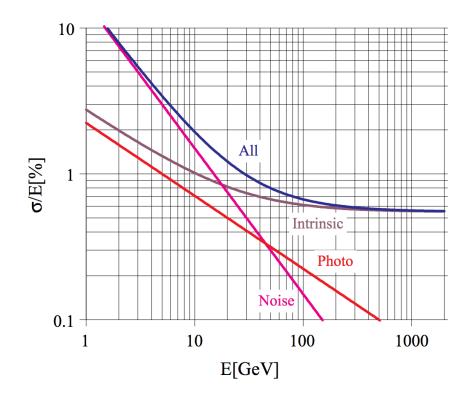


Photons



Photons

- Energy scale (error on the mean): known to 0.1% -- 0.3% for energies relevant to H $\rightarrow \gamma\gamma$
- Energy resolution (width of the distribution): around 1%

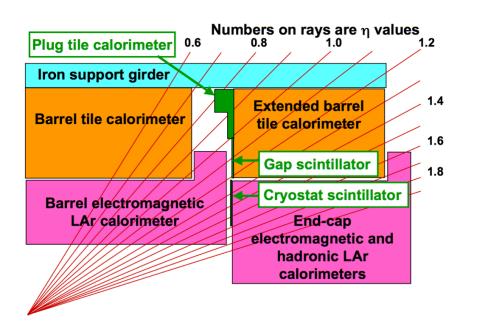


photon energy resolution (from CMS detector paper)

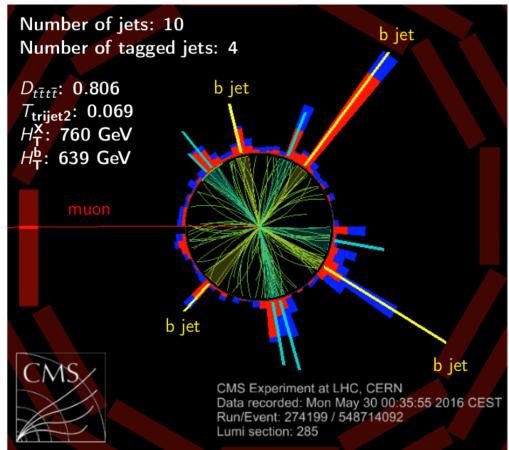
$$\left(\frac{\sigma}{E}\right)^{2} = \left(\frac{2.8\%}{\sqrt{E}}\right)^{2} + \left(\frac{0.12}{E}\right)^{2} + (0.30\%)^{2}$$
Stochastic term
"photo" : photon
counting
Noise term:
electronics +
digitization
Noise term:
back of crystal

HCAL and jets

 Hadron calorimeter designed to be as massive as possible to stop all particles, reconstruct hadron showers



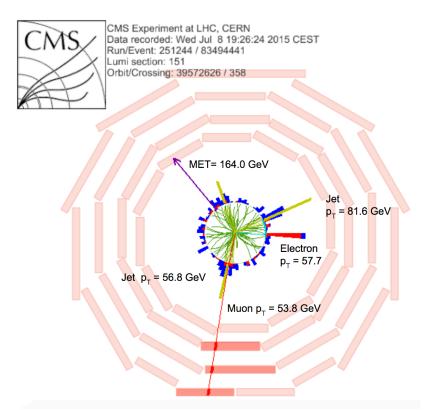
Reconstruct jets using **anti-k**_t **algorithm**, but this reflects our intuition of localized energy deposit from fragmentation and hadonization of a high-pT quark or gluon



Missing Transverse Momentum

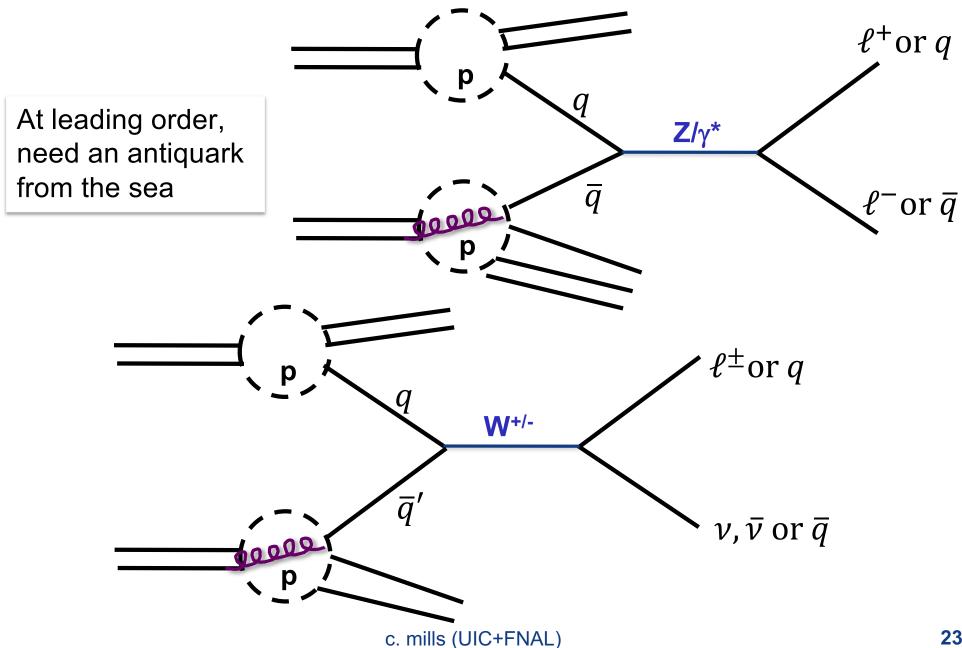
Detect **neutrino** (or other weakly interacting neutral) by invoking conservation of momentum in the plane transverse to the beam

Resolution of unclustered part driven by stochastic effects: scales as $\sqrt{\Sigma E_T}$



$$\vec{p}_T^{miss} = -1 \cdot \left[\sum_{\text{jets } j} \vec{p}_T^j + \sum_{\text{leptons } \ell} \vec{p}_T^\ell + \sum_{\text{photons } \gamma} \vec{p}_T^\gamma + \sum_{\text{unclustered } u} \vec{p}_T^u \right]$$

Building blocks: W and Z

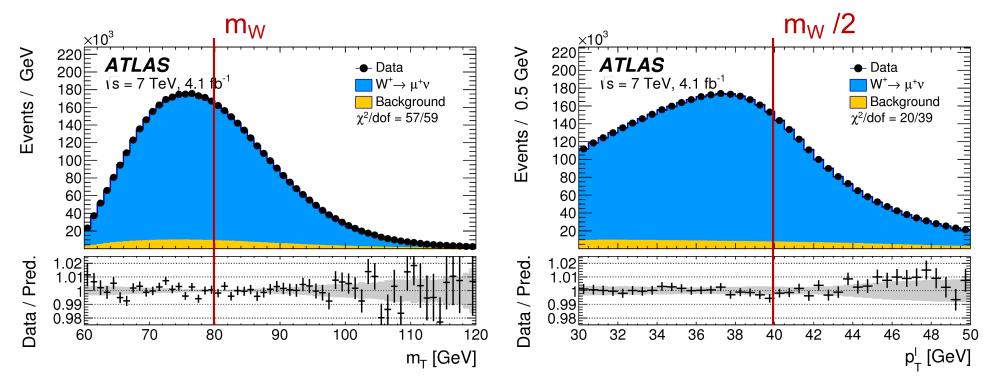


W Mass

- ATLAS measurement with 7 TeV data (just under 5 fb⁻¹)
 - \rightarrow Not statistically limited
- Fit to lepton p_T and transverse mass $m_T = \frac{1}{2}$

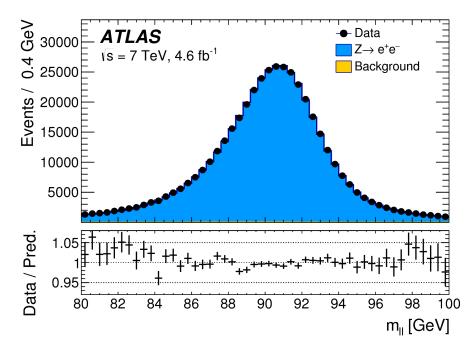
$$= \sqrt{2p_T^\ell p_T^{miss}(1 - \cos \Delta \varphi)}$$

- \rightarrow Kinematic edges at $m_W/2$ and m_W
- \rightarrow Convoluted with detector resolution,



W Mass

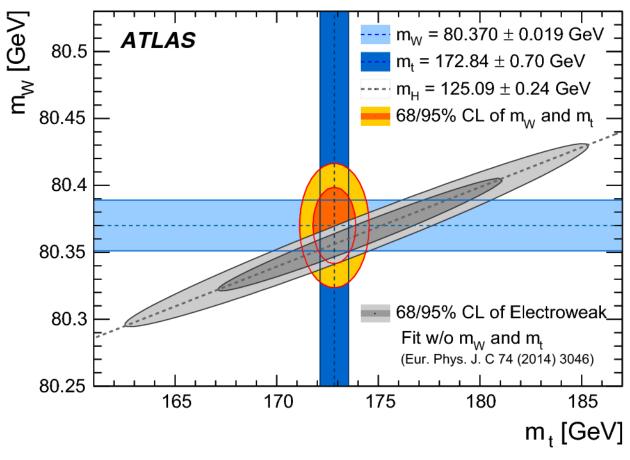
- Use Z events to model detector response, particularly recoil (unclustered energy)
 - → Similar production and kinematics
- Sensitive to charm and strange quark content of the proton
 - $\rightarrow 25\%$ of W production involves 2^{nd} -generation quark



Channel	$\begin{vmatrix} m_{W^+} - m_{W^-} \\ [MeV] \end{vmatrix}$							
$\frac{W \to e\nu}{W \to \mu\nu}$		$ 17.5 \\ 16.3 $	4.9	$\begin{array}{c} 0.9 \\ 1.1 \end{array}$	$5.4\\5.0$	0.0 0.0	$\begin{array}{c c}24.1\\26.0\end{array}$	
Combined		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1.0			I	

W mass

- $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$
 - $= 80370 \pm 19$ MeV,
- Fundamental test of internal consistency of Standard Model



(ATLAS STDM-2014-18)

• Weak mixing angle is a free parameter of the SM

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

• Measure **effective weak mixing angle** (includes EW corrections and is lepton-flavor dependent)

$$\sin^2 \theta_{\rm eff}^f = \kappa_f \sin^2 \theta_W$$

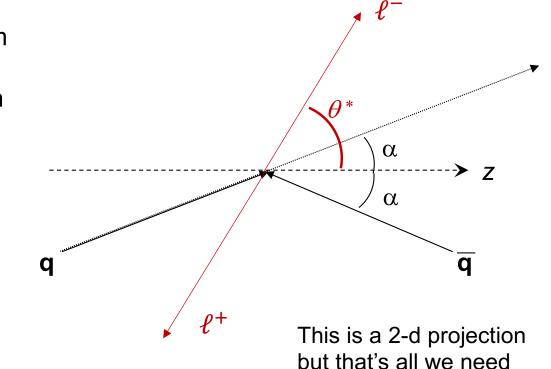
• Theoretical expression for asymmetry:

 $A_{\rm FB}^{\rm true}(m_{\ell\ell}) = \frac{6a_{\ell}a_{q}(8v_{\ell}v_{q} - Q_{q}KD_{m})}{16(v_{\ell}^{2} + a_{\ell}^{2})(v_{q}^{2} + a_{q}^{2}) - 8v_{\ell}v_{q}Q_{q}KD_{m} + Q_{q}^{2}K^{2}(D_{m}^{2} + \Gamma_{Z}^{2}/m_{Z}^{2})}$ vector and axial couplings of fermions (leptons and quarks) to Z $v_{f} = a_{f}(1 - 4|Q_{f}|\sin^{2}\theta_{\rm eff}^{f}) \text{ where } Q_{f} \text{ is the fermion charge}$

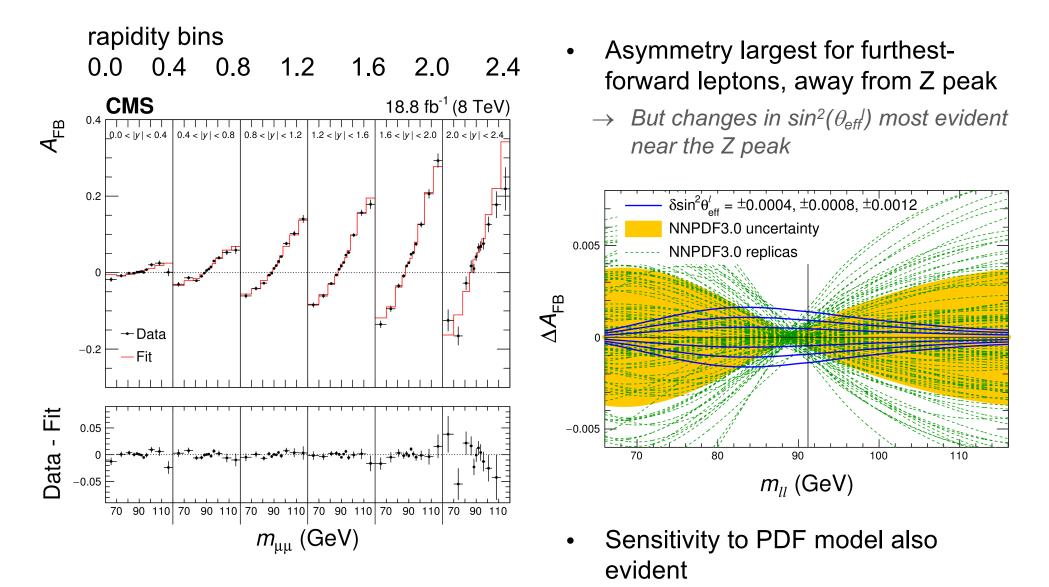
(CMS SMP-16-007)

- Ratios and asymmetries are powerful measurements because uncertainties on the total yield cancel to first order
- Define "forward" direction as $\cos \theta^* > 0$, where θ^* is defined in the Collins-Soper frame
 - \rightarrow Parton p_T is small compared to other momenta so this is close to the lab frame
- Valence quarks, but antiquarks only from the sea → momentum asymmetry → quark direction more likely to be in the direction of dilepton system boost
 - \rightarrow Calculate $\cos \theta^*$ under this assumption
 - \rightarrow Account for dilution
- Measured asymmetry defined

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

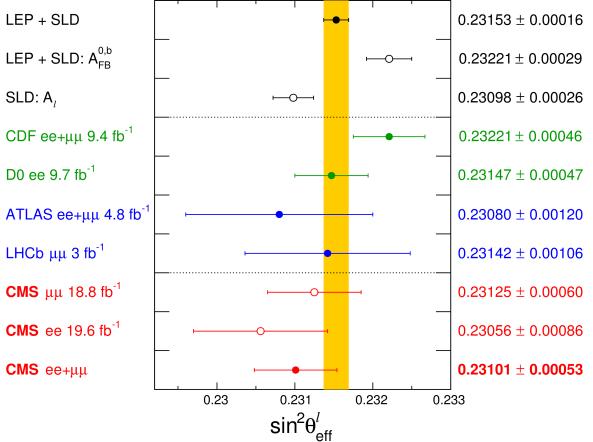


(CMS SMP-16-007)



 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \text{ (stat)} \pm 0.00018 \text{ (syst)} \pm 0.00016 \text{ (theo)} \pm 0.00031 \text{ (PDF)}$

- Limiting systematic is PDFs, statistical uncertainty from Monte Carlo
- Recall percent-level uncertainties on lepton ID: reduced to per-mil effect
- PDF replicas weighted by how well the model agrees with data
 - → Final result is a χ2weighted average over the replicas, uncertainty is the weighted RMS
 - → PDF uncertainty reduced by factor 2, still dominant



Cross section, simple view

Cross section formula

$$\sigma = \frac{N - B}{A \varepsilon \int \mathcal{L} dt}$$

- *N* = number of events observed
- in selected data
- *B* = estimated background
- A = Acceptance
- ϵ = Efficiency
- $\int \mathcal{L}dt$ = Integrated luminosity

Acceptance A purely from theory

$$A = \frac{N(\text{kinematic})}{N(\text{total})}$$

Fraction of total events that pass kinematic selection (fiducial volume) Efficiency ε brings in detector effects (measure using simulated events and detector)

 $\varepsilon = \frac{N(\text{reconstructed})}{N(\text{kinematic})}$

Fraction of events in fiducial volume that pass all event selection

Cross section, simple view

Cross section formula •

$$\sigma = \frac{N-B}{A \varepsilon \mathcal{L}}$$

N = number of events

- observed in selected data
- *B* = estimated background
- A = Acceptance
- ε = Efficiency
- L = Integrated luminosity
- Uncertainties follow by error propagation with the statistical • uncertainty $\delta N = \sqrt{N}$

$$(\delta\sigma)^{2} = \frac{N}{(A\varepsilon\mathcal{L})^{2}} + \left(\frac{\delta B}{A\varepsilon\mathcal{L}}\right)^{2} + \left(\frac{\delta A}{A}\right)^{2}\sigma^{2} + \left(\frac{\delta\varepsilon}{\varepsilon}\right)^{2}\sigma^{2}$$
If the *absolute* uncertainty on your background is larger than Fractional uncertainty or acceptance and efficience

(to see this, divide through by σ^2)

1 the ;V your signal, no sensitivity apply to the cross section

Cross section, modern view (I)

- Likelihood fit takes into account both the nominal expected signal and systematic uncertainties as nuisance parameters
 - \rightarrow We say that the nuisance parameters are "profiled"
- Models the probability to observe a certain number of events in a certain bin

$$\mathcal{L}(\mu, B(\boldsymbol{\theta})) \propto P(N_{obs} | \mu S(\boldsymbol{\theta}) + B(\boldsymbol{\theta})) \prod_{i} \exp\left(\frac{\left(\theta_{i} - \theta_{i}^{0}\right)^{2}}{\sigma_{i}^{2}}\right)$$

Poisson distribution describing the predicted and observed yield in each bin Expectation is sum of signal S and background(s) B

- Both a function of nuisance parameters $\boldsymbol{\theta}$
- Signal strength μ "floats" unconstrained

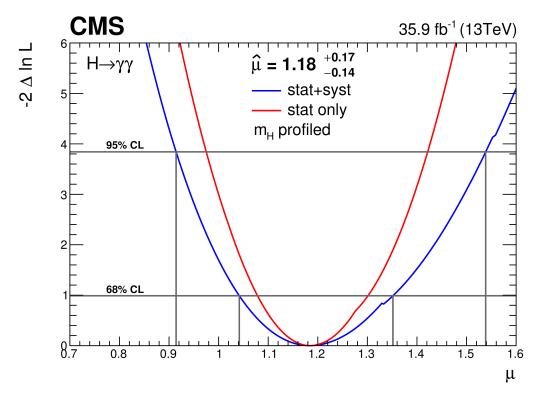
 $\mu = \sigma_{\text{measured}} / \sigma_{\text{predicted}}$ (To extend to multiple bins, take a product of Poisson distributions) Product of gaussians, one per (uncorrelated) source of uncertainty

- The θ_i are allowed to vary in the fit, but we say that they are "constrained" by this gaussian
- θ_i^0 is the nominal value of the uncertain parameter
- σ_i is the uncertainty on parameter *i*

Cross section, modern view (II)

- Can fit for parameters other than cross section
- Equivalent to maximizing the likelihood: minimize negative log likelihood
 - \rightarrow Simplify computation

$$-\log \mathcal{L} = -(\mu S(\boldsymbol{\theta}) + B(\boldsymbol{\theta})) + N_{obs} \log(\mu S(\boldsymbol{\theta}) + B(\boldsymbol{\theta})) + \sum_{i} \frac{(\theta_i - \theta_i^0)^2}{\sigma_i^2} + \text{constants}$$



- A typical likelihood scan
- Well-behaved: quadratic shape
- Central value at minimum
- Read 1- and 2-sigma uncertainty from points where - 2 log *L* has increased by 1 and 4

