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What is the goal of the LHC?

BBC, March 2018

CERN

A candidate Higgs boson collision event at CMS, one of the experiments at the Large Hadron Collider

A top physicist says the construction of a|"factory" |to produce Higgs boson
particles is a priority for the science community.

In an exclusive interview, Nigel Lockyer, head of America's premier particle physics
lab, said studying the Higgs could hasten major discoveries.


https://www.bbc.com/news/science-environment-43584969

Is the LHC a Higgs factory?

Standard Model Total Production Cross Section Measurements staus: March 2019
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Is the LHC a Higgs factory?

Rate at which
processes happen

Standard Model Total Production Cross Section Measurements staus: March 2019
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Is the LHC a Higgs factory?

Standard Model Total Production Cross Section Measurements staus: March 2019
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Higgs versus gluons

One major ingredient in this model is a hypothetical, ubiquitous
quantum field that is supposed to be responsible for giving particles
their masses (this field would answer the basic question of why particles

have the masses they do--or indeed, why they have any mass at all).
This field is called the ‘Higgs field | Ac

- Scientific American



https://www.scientificamerican.com/article/what-exactly-is-the-higgs/

Higgs versus gluons

One major ingredient in this model is a hypothetical, ubiquitous
quantum field that is supposed to be responsible for giving particles
their masses (this field would answer the basic question of why particles

have the masses they do--or indeed, why they have any mass at all).
This field is called the ‘Higgs field | Ac

- Scientific American

This is true, but it turns out that the gluon
IS responsible for most of our mass -
without them, the proton mass would be
many orders of magnitude lighter...

Image credit: JLab


https://www.scientificamerican.com/article/what-exactly-is-the-higgs/

The Higgs-gluon connection

There Is a strong connection between

the Higgs boson and gluons. Most Higgs bosons

are produced when
two gluons fuse

Due to the Higgs

: boson, Lhetstrongd ...okay, enough about the Higgs boson
bt l*ild  for now - more about the strong force!




QCD physics program at the LHC

Parton Distribution
Functions (PDFs)

Perturbative QCD /
1. Photon/W/Z+jets strong coupling
2. Jet physics

Fragmentation
3. Jet substructure Functions

4.°Soft QCD” & Heavy lons Monte Carlo

. Parameter Tunin
5. Quarkonia J

“Exotic” quantum
Other non- phenomena
perturbative effects
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Experimental considerations




Calibration

We don't measure particles, we measure energy
deposits and then infer particle properties.

Single-particle objects Composite objects
(e.g. muons) (e.q. jets)

Energy and angular biases Energy and angular biases
Particles in inactive material
Particles bent out of cone
Secondary particles

Punchthrough
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Calibration

We don't measure particles, we measure energy
deposits and then infer particle properties.

Composite objects
(€.9. Jets)

~ Energy and angular biases

Particles In inactive material

Usually one
“bulk” correction Particles bent out of cone
Food for thought: how would Secondary particles

you do this without depending
on the prior spectrum? Punchthrough



Calibration

The nominal calibration Is derived using simulation and
then a residual calibration accounts for ditferences
between data and simulation (derived using data).

Can use the
balance of well-
measured objects
(e.g. photons)
with jets to study
the bias in data.




Jet energy bias uncertainty
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Jet energy bias uncertainty
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When someone says they have measured a differential
cross-section, they mean that it has been unfolded.

Untolding corrects tor detector effects so that our data
can be directly compared with theory predictions.

It is not valid to directly compare theory
predictions to detector-level data !!

Either the theory or the data must be corrected.
Correcting the data is more general and can allow for
multiple theory groups to reuse the same measurement.




What does unfolding do?

In general, unfolding needs to correct for interrelated eftects:

e Acceptance and efficiency

= Particles produced may not be measured
e Detector noise

= Particles measured may not be from real particles
e Background processes

= |f you want to measure process X, need to remove Y
e Combinatorics

= |f N particles, chance that detector can change order
e Detector distortions

= Bias and resolution eftects



What does unfolding do?

In general, unfolding needs to correct for interrelated eftects:

e Acceptance and efficiency
= Particles produced may not be measured
e Detector noise
= Particles measured may not be from real particles
e Background processes
= |f you want to measure process X, need to remove Y
e Combinatorics
= |f N particles, chance that detector can change order

e Detector distortions l 'll briefly
= Bias and resolution effects Illustrate this




lllustrative toy example

m = Rt m = measured; t = true

We usually call R the “response matrix” because
m and t are binned (and thus vectors).

We (usually) get R from detailed
detector simulations.

e.g. Geant4 (particle propagation and energy deposition) +
custom code for analg and digital signal emulation.



lllustrative toy example

m = Rt m = measured; t = true

| know what you want to do hereis t= R m.



lllustrative toy example

m = Rt m = measured; t = true

| know what you want to do hereis t= R m.

In the next slides, | hope to convince
you that this is not usually a good idea.



lllustrative toy example

Consider this case, where 0 < € < 0.5



lllustrative toy example

1 — € €
K= ( € 1 — e)
Var(R™'m) o< 1/Det(R) =1 — 2¢

Statistical uncertainty blows up ase = 0.5



A more realistic example
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Unfolding by Matrix Inversion
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The HEP solution

Our solution is to do regularized matrix inversion.

here are two main technigues that we use:

“Singular Value

lterative Bayesian Unfolding Decomposition (SVD) Unfolding”

Pr(mj |tz) y Pr(tz)

0;; = R=USV*
Y22 Pr(mylt:) - Pr(ty)
U, V, orthogonal, S diagonal & non-negative
d; 2
T g i
p— <i\T ) = y
d U T z( ) s 822 g
Prk 1 Z 0, Prk
i " t=Vz
Nucl. Inst. Meth. A 362 (1995) 487 Nucl. Inst. Meth. A 372 (1995) 469

Main tool: RooUnfold (ROOT-based C++ code)



The HEP solution

Note: regularized matrix inversion depends
on unphysical irregularization parameters

One choses parameters to tradeoff bias and uncertainty.

IBU Unfolding SVD Unfolding

- depend on prior - dependont

- depends on #
of iterations



Example: lterative Bayesian Unfolding
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One last comment: phase space def.

Need to decide what to unfold to, called the “fiducial volume”

Calculations are often at the level of “born-level partons”

Measurements are at the level of hadrons.

+Non-perturbative corrections

+Resummation (“dressed”)

Born-level parton




One last comment: phase space def.

Need to decide what to unfold to, called the “fiducial volume”

Calculations are often at the level of “born-level partons”

Measurements are at the level of hadrons.

The closer the target is to the observable, the less the
unfolding has to do and the smaller the modeling uncertainty.

Please don’t unfold to “born-level partons”. Better to
‘dress’ the calculations with resummation and hadronization.

(fortunately, born measurements is becoming less fashionable these days)



Physics topics
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PDFs

Every* LHC measurement is sensitive to PDFs - the ones
that are most useful for constraining them can be (1)
measured precisely, (2) predicted precisely (see last

term), and (3) mostly sensitive to ~one partonic channel

*Except when the protons interact coherently.




Valence quarks at moderate x
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Valence quarks at moderate x
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13/

Heavier quarks

Various measurements are constructed to be sensitive
to the s-, c-, and even b-component of the proton.

For example, W+charm measurement
can constrain the sea strangeness.

(ATLAS and to a lesser extent CMS

O
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Gluon PDF at moderate - high x is constrained by two sources:
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https://arxiv.org/pdf/1104.1175.pdf
https://cds.cern.ch/record/1460019/plots
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Fixed-order pQCD

Precise measurements and predictions can do more than
provide input to PDFs - they also provide a powertul
consistency test of QCD in new energy regimes.
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Fixed-order pQCD
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Fixed-order pQCD

Caution: story is scale-
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Strong coupling constant

Scale challenges aside, one can use these data to test the
running of the strong coupling at the highest energies.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2016-10/fig_09.pdf

Strong coupling constant

Scale challenges aside, one can use these data to test the
running of the strong coupling at the highest energies.
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BSM from the running of os

New fermion limits using NLOJet++ & ATLAS data
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BSM from the running of os

New fermion limits using NLOJet++ & ATLAS data
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Resumed pQCD and jet substructure

Well-separated jets can be described by fixed-order pQCD
but the radiation pattern inside jets requires resummation.

A useful way of thinking
about radiation inside
~ 2 AR the jet is In the context of

the Lund plane

UE/MPI

log(1/z)

(z1,AR1)
(z2,AR?)

collinear

log(R/AR)



Resumed pQCD and jet substructure

Well-separated jets can be described by fixed-order pQCD
but the radiation pattern inside jets requires resummation.

For example, the jet mass is approximately

m2/pT12 ~ zZAR2 which is a line in the Lund plane:

(where did this come from?)

log(1/z) = constant - 2 log(R/AR)

One can use this to derive the probability
distribution at leading logarithm accuracy.



In fact, the jet mass has been calculated to
higher accuracy and precisely measured!
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In fact, the jet mass has been calculated to
higher accuracy and precisely measured!
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Fragmentation

While jet substructure nowadays typically reters to
observables like the jet mass and Lund plane coordinates,

there is a long history of more traditional “fragmentation
function” measurements which probe similar physical regimes.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-16/fig_11c.pdf

Fragmentation: generic g/g jets
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We can't generally measure
iIndividual particles, but we
can for charged particles.

With charged-only, we can't
oredict this distribution from
first principles. But for a given
jet type (g/g) we can predict
how It depend on jet pr.

How can we extract just the
gluon (or quark) contribution?


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-16/fig_11c.pdf

The rapidity trick

One way is to find two
event samples
(fand c) with different
g/g compositions.

Given the fractions fq,
you can extract the
g/g bin contents h:

h = fyh + (1= f)h;
he = fohT+ (1= fO)h



Jetn

The rapidity trick

. ATLAS Simulation

=13 TeV
NPDF2.3LO + Pythia 8.186 A14

\Iready with dijets
One, you can make
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One way is to find two
event samples
(fand ¢) with different
g/g compositions.

Given the fractions fq,
you can extract the
g/g bin contents h:
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The rapidity trick
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Gluons have more,
softer particles
than quarks.

roughly gluons
have 2x the
particles as quarks
since they have
~twice as much
color charge



The pt dependence

One can predict the pr dependence of these
observables, but let's just do a quick sanity check:
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One last note on gluon fragmentation
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QCD has much more to offer

've offered a (biased) collection of results,
but there are many more!

More on PDFs, fixed-order effects, ...

...Resummation, non-global effects (“entanglement”), ...

...Quark and gluon properties, W/Z/H hadronic decays, ...

...Collective effects, connections with heavy ions, ...

...However, | stand between you and lunch, so let's wrap up!



Summary and overview

Even though QCD has only ~1 free parameter, it is a rich
theory with various regimes that we can probe at the LHC.

Studying QCD is inherently
interesting as a quantum theory
of nature. Understanding it is
also critical for direct and indirect
new particles searches.

...there are also many exciting
connections to modern machine learning
that | did not have time to discuss -
consider attending ML4Jets2020!



https://indico.cern.ch/event/809820/

Happy Birthday to the Gluon!

Summar 1979 Summer 2019



Questions?




Soft drop procedure

Take a Jet clustered with e.g. anti-k;

!

clusters hardest
radiation first



Soft drop procedure

!

Re-cluster it with C/A

N

clusters closest
radiation first




Soft drop procedure

Traverse the clustering
tree backwards

l /— min(pT, j; ,PT,js)

If a branch point P —
satisfies the soft drop |
condition, stop. /2

Otherwise remove the softer branch
and continue down the harder branch.




Soft drop procedure

Traverse the clustering
tree backwards

: [ St

It a branch point
satisfies the soft drop
condition, stop.

Otherwise remove the softer branch
and continue down the harder branch.



Jet constituents

CMS simulation (8 TeV)
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