

Quench Detection at the LHC

And how we contributed

Sarah, Miro, Ferdinand

What is a quench?

As you probably already know, a quench is the loss of superconductive properties and can be very dangerous in the case of the LHC.

$$U = I \cdot R \tag{1}$$

Damage

Figure: The incident 2008

We need a very precise and fast protective system to detect quenches and shut the magnets down as soon as possible.

CERNs dedicated Workgroup

Our Device

Figure: Keysight 34972a (Source: Keysight Product Picture)

Our Device

Figure: First Words

The new device that we had to set up, program with Python to test electronics cards for use in the LHC.

Our Task

- New Quench Detection System has to be tested heavily
- New system has 16 channels
- Test signals will be produced with e.g. signal generators
- Switch Matrix used to route the signals to specific channels
- Using Python to program the device

Our Device

Figure: Universal Quench Detection System

Coding

```
import pyvisa
import time
import matplotlib.pyplot as plt
import numpy as np
```

Figure: Import necessary libraries

Coding

```
rm = pyvisa.ResourceManager()
rm.list_resources()
my_instrument = rm.open_resource('USB0::0x0957::0x2007::MY59001715::INSTR')
```

Figure: Establishing a Connection

Coding

```
def switch close(space):
    tmp='ROUTe:CLOS (@' +space+')'
    print(tmp)
    my instrument.write(tmp)
def switch_open(space):
     tmp='ROUTe:OPEN (@' +space+')'
     print(tmp)
     my_instrument.write(tmp)
def switch reset():
    tmp= 'ROUTe: OPEN (@111:148)'
    print(tmp)
    my_instrument.write(tmp)
def switch read():
    space= input()
    tmp='ROUTe:READ? (@' + (str(space))+')'
    print(tmp)
    my instrument.write(tmp)
    info = my instrument.read(tmp)
    print(info)
def error check():
    info= my_instrument.query ('SYSTem: ERRor?')
    print (info)
```


Figure: Multi wire cable

Figure: Wire-end sleeves

Figure: Switch Matrix output

Figure: Switch Matrix input

Figure: Finished Switch Matrix wiring

Figure: Finished Switch Matrix wiring

Figure: Wiring the cards in the lab

Figure: Done:)

Conclusion

- 1. We got a profound insight into the work of one of CERNs engineering departments
- 2. We learned a lot about coding in python and manage our code with git
- 3. Learned to work in the lab and build cables
- 4. We used LATEX for the first time to make this presentation!
- 5. We had lots of fun!

