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1 Introduction

It is currently estimated that there are more than 10 million different species on our planet, [13]. This
incredible biodiversity has been captivating scientists since the 20th century.

Living beings interact with beings of the same species and of different species in order to feed
themselves (predation), cooperate (mutualism) or fight for the same resources (competition). These
interactions give rise to a highly complex network that governs all the population dynamics and
determine whether they lead to the species’ coexistence or extinction. It is therefore a great challenge
to understand how it is possible for such a vast number of species to coexist in equilibrium and how
stable this equilibrium is.

We know that species have the ability to adapt to changes in the environment, [1]. But the
connection between this phenomenon and the existing populational models is still missing. Biologically
and mathematically we are still far from fully understanding on how adaptative evolution works.

In order to find the answers to all these questions, biologists, physicists and mathematicians have
been studying smaller ecosystems and creating mathematical models to describe the dynamics of
species, [4] [16] [17]. Although they are deterministic, these models can’t be implemented with basic
analytical tools given their large number of variables and dependencies, which requires employing
methods of dynamical systems theory.

The bacteria Escherichia coli are often chosen as subjects of experiments for their simplicity, fast
growth, easy access and familiarity. These organisms were first discovered by Theodor Escherich, [2],
in 1885 and nowadays hundreds of strains are known, [15]. They have a size of the order of 1 µm, can
divide every 20 minutes, are found in the intestines of endotherms (commonly known as warm-blooded
animals) and are able to grow in the presence of oxygen, which makes them easy and inexpensive to
cultivate in a laboratory, [11].

2 State of the art

In 1934, the ecologist Georgy Gause enounced that in processes of competition for limited resources,
one species would drive the others to extinction, [3] — the Gause’s Law — based on observations
of a culture with two species of single-celled eukaryotes (Paramecium aurelia and Paramecium
caudatum) competing for the consumption of bacteria in an Osterhout’s medium1.

The Gause’s Law was later reformulated by Garrett Hardin in 1960 and became known by the
name Competitive Exclusion Principle (CEP), [5], stating that the number of species coexisting cannot
exceed the number of resources. However, one year later, George Hutchinson noticed that Plankton
could grow in situations of limited resources, [6], known as the Paradox of the Plankton, as we know
today that happens in many other ecosystems, in violation of the CEP. So a question arised: in what
circumstances do competitive exclusion and sustainable coexistence take place?

In 1941, Monod studied a culture of E. coli in a medium containing glucose and proposed a
sigmoidal relation between the culture’s growth rate R, and its nutrient concentration c, [4]:

R = Rmax
c

K + c
, (1)

where K is the concentration for which R = Rmax/2.
Although revolutionary, this empirical model described a single species in the presence of a single

nutrient which is too simplistic, since species depend on different nutrients for growth and are never
isolated. Moreover it could only produce accurate results for short-term evolution.

Monod also discovered the diauxic growth. When presented with different nutrients, bacteria
evaluate the energy cost of metabolizing each one versus the growth rate they will provide (how
valuable the resource is), and choose what gene to express in order to ingest the preferred nutrient.

1An Osterhout’s medium is a salt solution with 24 mOsm/kg, pH 7.0 and composition 104 mg of NaCl, 8.5 mg of
MgCl2, 4 mg of MgSO4, 2.3 mg of KCl, and 1 mg of CaCl2 per liter of water.
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In this way, bacteria consume the nutrients sequentially by order of the most to the least favorable,
generating different growth rate phases over time, named diauxies. This adaptative mechanism ensures
an optimization strategy: it allows the species to have the biggest growth rate when the population is
small (and thus, more fragile) and then provides a smaller growth rate when the population becomes
bigger (and the risk of extinction is smaller).

”Diauxie — This phenomenon is characterized by a double growth cycle consisting of two
exponential phases separated by a phase during which the growth rate passes through a min-
imum even becoming negative in some cases.”

—Monod

Figure 1: Time evolution of E. coli density in a medium composed by two different nutrients, glucose and

sorbitol, in different proportions: A: Glucose 50 µg/ml; sorbitol 150 µg/ml. B: Glucose 100 µg/ml; sorbitol 100

µg/ml. C: Glucose 150 µg/ml; sorbitol 50 µg/ml. Adapted from [4].

Figure 1 shows the result of an experiment done by Monod in which he studied the growth of a
culture of E. coli in a medium with two nutrients. When varying the concentrations of each nutrient,
the growth phases are proportional to the nutrient concentrations, showing that bacteria consumed
the nutrients separately by order.

In 1969, Robert MacArthur proposed the first mathematical consumer-resource model describing
a group of m species competing for p common resources and introduced different timescales for the
rates of supply and consumption, [9].

He assumed the rate of growth of a population σ (Ẋσ) to be proportional to the already existing
population (Xσ), the number of resources of each type (Ri), their relative importance measured by
the weight parameter (wi), and the probability of an individual of that population to consume the
different nutrients (aσi). The number of resources of type i varies according to their current amount,
the carrying capacity of the medium (Ki), and to the probability of being eaten by any of the species
and their population size. This model is described by the equations:

Ẋσ

Xσ
= Cσ

(
p∑
i=1

aσiwiRi − Tσ

)
Ṙi
Ri

= ri

(
1− Ri

Ki

)
−

m∑
σ=1

aσiXσ

(2)

where the dot represents time derivative. The constant Ti is the threshold mass of resource necessary
to maintain the population, Ci is the proportion between the mass of resource and of the population
it originates, and ri is the maximum rate of resource variation, that takes an exponential form in the
absence of consumption.

Inspired by previous works of MacArthur and Edward Wilson, [7] [8], in 2001, the ecologist Stephen
Hubbell examined the biodiversity in ecological communities looking at the abundance distribution of
species in different locations (fig. 2).
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Figure 2: Relative population sizes of 5 ecological communities ranked from the largest to the smallest. 1:

Tropical wet forest in Amazonia. 2: Tropical dry deciduous forest in Costa Rica. 3: Marine planktonic copepod

community from the North Pacific gyre. 4: Terrestrical breeding birds of Britian. 5: Tropical bat community

from Panama. Adapted from [10].

Hubbell noticed that the curves had similar shapes, which lead him to wonder if there would exist
a theory behind it and, if so, whether the curves were possible to predict. To explain this pattern, he
created the Unified Neutral Theory of Biodiversity [10] in which species were grouped by ecological
communities. The theory stated that species that occupied the same geographic area and level in
a food chain were seen as equally strong and their differences were irrelevant to their success. In
a neutral setup, the individuals were considered identical in terms of average probabilities of birth,
death, migration and speciation. Only small random deviations in this quantities were responsible for
changes in population which meant that biodiversity arised from stochastic processes.

Based on the MacArthur’s model (2), Posfai, Taillefumier and Wingreen presented a resource-
competition model in 2016, [16], that accounted for the fact that organisms work with a limited
amount of energy and therefore, need to choose how to allocate different fractions in order to favor
the traits that maximize the species’ probability of survival. This sometimes means reducing certain
performances in order to enhance others — trade-offs. This model predicted that coexistence of
species could occur in cases where, according to the CEP, could not, reproducing what happens in
many ecosystems, [6].

Similarly to the MacArthur’ model, the population growth rates (ṅσ) vary according to the current
population densities (nσ) and death rates (δσ), the nutritional values (vi) and available amounts (ri)
of nutrients, and the consumption rates (ασi) of every resource i by each species σ, called ”metabolic
strategies”. The variations of resources concentrations (ċi) are proportional to their supply rates (si)
and decrease with the rates of consumption and degradation (µi):

ṅσ = nσ

[
p∑
i=1

viασiri(ci)− δσ

]

ċi = si −
m∑
σ=1

nσασiri(ci)− µici

(3)

where
ri(ci) =

ci
Ki + ci

, (4)

Ki being the concentration for which ri = rmaxi /2. The metabolic strategies are constrained by the
maximum uptake rate they can have, Eσ:

p∑
i=1

wiασi = Eσ. (5)

Posfai et al. tested the possibility of coexistence of a system consisting of three species in the
presence of three nutrients with different supply rates. In this case, by equation 5, given two metabolic
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strategies for a certain species, the third one is automatically determined. Thus, a triangular plot,
where the axes go from 0 to 1, i.e. a simplex plot, is the perfect way to visualize the distribution of
metabolic strategies.

Figure 3: Top: simplex plots with metabolic strategies of 3 species (m = 3) relative to 3 different resources

(p = 3) represented by colored dots: α1i = (0.30, 0.20, 0.50) in blue, α2i = (0.20, 0.65, 0.15) in green, α3i =

(0.60, 0.20, 0.20) in red, the convex-hull of metabolic strategies in yellow triangles, and the supply rates s =

(0.10, 0.20, 0.70), s = (0.10, 0.30, 0.50) and s = (0.40, 0.30, 0.30) from left to right respectively in black stars.

Bottom: simulations obtained with model equations (3), (4) and (5) for the evolution of the 3 population

densities with parameters µ = 0.1, δ = 0.1, c = 1, v = 1, K = 1, w = 1, Eσ = 1 for times between 0 and 300 δ.

Note that we have taken the same parameters for all three species.

Figure 4: Top: simplex plots with metabolic strategies of 15 species (m = 15) relative to 3 different resources

(p = 3) represented by blue (14) and red (1) dots, convex-hull of metabolic strategies in yellow polygons, and

supply rates s = (0.15, 0.19, 0.66) in a black star. The metabolic strategies in blue were chosen randomly

between 0 and 1 such that their convex-hull would not include the supply rates. The metabolic strategies in red

were chosen such that the new convex-hull formed by the 15 species would include the supply rates. Bottom:

simulations obtained with model equations (3) for the evolution of the same 14 and 15 population densities with

parameters µ = 0.1, δ = 0.1, c = 1, v = 1, K = 1, w = 1, Eσ = 1 for times between 0 and 500 δ.
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Figure 3 shows three simplex plots containing the initial settings of the simulations, with dots
representing the metabolic strategies of each species and a star with the nutrients’ supply rates.
Below, there are respective evolutions of the population densities over time. The results indicate that,
from left to right, as the supply rates fall into the area delimited by the metabolic strategies — the
convex-hull — the coexistence becomes possible. This, of course, discloses the importance of having
certain species in an ecosystem. The addition of a species whose metabolic strategies allow to enclose
the supply rates is determinant to the future of all the other species.

In the first system of figure 4, composed by 14 species, it can be seen that most go to extinction.
However, if a new determinant species is inserted in the system, this no longer happens and all species
can coexist.

Motivated by the Unified Neutral Theory of Biodiversity of Hubbell, [10], Posfai et al. decided to
incorporate demographic stochasticity in their model considering the following set of equations:

ṅσ =

[
p∑
i=1

(ασi + ξσi) ci − δσ

]
nσ

ci =
si∑m

σ=1 nσ (ασi + ξσi)

δσ = 1 + ξσ

(6)

where ξσi and ξσ are random variables with Gaussian distribution N (0,Σ2), and with metabolic
strategies and supply rates normalized such that

p∑
i=1

ασi = 1 and

p∑
i=1

si =
m∑
σ=1

nσ(0). (7)

Implementing the previous model they obtained the results shown in figure 5. The model was able
to reproduce the curves identified by Hubbell.

Figure 5: Simulation of rank-abundance curves obtained with model equations (6) and (7) for a total population

of 100 individuals competing for 3 resources equally supplied. The solid, dashed and dotted curves correspond

to immigration probabilities of 0.001, 0.01 and 0.1 respectively. Adapted from [16].

In December 2018, Pacciani-Mori, Suweis and Maritan constructed a model that assumed the same
equations as Posfai et al., (3), (4) and (5), but dynamic metabolic strategies instead of fixed ones,
[17]. By doing this, they introduced the fact that species have the ability to adapt to changes in the
environment, in this case, nutrients’ concentrations and number of competing species. To do this,
Pacciani-Mori et al. required species to adapt in a favorable way, i.e., so that they would evolve in
order to maximize their growth rate:

α̇σi ∝
∂

∂ασi

(
p∑
i=1

viασiri − δσ

)
. (8)

Since δσ is the death rate of species σ, 1/δσ is a natural choice for the characteristic time scale of
the evolution of population σ. Therefore, the characteristic time scale of evolution of the metabolic
strategies can be written as a multiple of 1/δσ, given by a parameter d.
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Now that the metabolic strategies are dynamic, there is a maximum uptake rate (E∗
σ) for each

species:
∑p

i=1wiασi(t) = Eσ(t) ≤ E∗
σ. Similarly, the nutrient uptake rates E∗

σ can be written as Qδσ.
Therefore, the evolution of metabolic strategies is described by the equation

α̇σi = ασi d δσ

viri −Θ

(
p∑
i=1

wiασi −Qδσ

)
wi∑p

k=1w
2
kασk

p∑
j=1

vjrjwjασj

 . (9)

The full calculation of equation (9) is rather lengthy and can be found in the supplemental material
of [17], page 4. The Heaviside-theta function prevents the metabolic strategies from taking negative
values.

Pacciani-Mori et al. tested the model of equations (3), (4) and (5) with the addition of equation
(9), for the growth of one species only in the presence of two different nutrients in order to reproduce
the observations of Monod. The results are shown in figure 6.

Figure 6: Simulations obtained with model equations (3), (4), (5) and (9) for 1 population of individuals

of the same species with access to 2 resources of different properties. From left to right are the results of

the simulation for the population density, nutrient concentrations and respective metabolic strategies with

parameters ~v = (2, 25), ~w = (1, 4), ~K = (1, 3), Q = 25, ∆ = 1 and d = 1 for times between 0 and 500 δ.

The individuals consume the first resource until it ends at t ≈ 0.11, [see figure 6(b) in orange].
When this happens, the metabolic strategy corresponding to this resource changes, [see figure 6(c) in
orange], and the population suffers a diauxic shift, [see figure 6(a)]. Then, the individuals consume the
second resource until it ends at t ≈ 0.30, [see figure 6(b) in blue]. When this happens, the metabolic
strategy corresponding to this resource changes, [see figure 6(c) in blue], and the population starts
having a negative growth, [see figure 6(a)].

We’ve already seen that with the model constructed by Posfai et al., when the supply rates fall
outside of the convex-hull of metabolic strategies, the coexistence of the initial set of species becomes
impossible. However, they did not consider the adaptability of species. Pacciani-Mori et al. repeated
the same simulations as Posfai et al. did, adding this detail and compared the results.

Figure 7 shows the results of the simulations obtained with model equations (3), (4), (5) and
(9). Observing the simplex plot, it is possible to understand that, over time, the metabolic strategies
evolved in a way such that their convex-hull would include the supply rates. By doing this, species
become more fit to survive, as the consumption rates of each resource become compatible with their
supply rates. Analyzing the plots that display this evolution (fig. 7 bottom), we can identify that
adaptation period (0 < t . 100) following by the stabilization of the populations and metabolic
strategies (t & 100), in contrary of what is obtained in the fixed metabolic strategies model of Posfai
et al., figure 7 top right. These results exhibit that adaptation is crucial to the survival of species
when in a sub-ideal initial setting.
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Figure 7: Simulation obtained with model equations (3), (4), (5) and (9) for the evolution of 10 population

densities (m = 10) competing for 3 different resources (p = 3) during 200 time steps. Top left: simplex plot with

initial and final metabolic strategies (and respective convex-hulls) represented in blue and red respectively and

supply rates in a black star; Top right: evolution of the population densities in the case where the metabolic

strategies are fixed; Bottom left: evolution of the population densities in the case where the metabolic strategies

are adaptative; Bottom right: evolution of the metabolic strategies in the adaptative case; The parameters used

were Q = 2, µ = 0, δσ ∈ U [1, 1.5] (U being the uniform distribution), Eσ ∈ U [0, Qδσ], vi ∈ U [1, 2], wi ∈ U [0, viQ],

nσ(0) ∈ U [0, 1], ci(0) ∈ U [0, 1], Ki ∈ U [1, 5], si ∈ U [0, 5], ασi(0) :
∑p
i=1 wiασi(0) = Eσ(0).

Figure 8: Simulation obtained with model equations (3), (4), (5) and (9) for the evolution of 20 population

densities (m = 20) competing for 3 different resources (p = 3) during 500 time steps. Q = 2, µ = 0; Top

Left: Simplex plot with initial and final metabolic strategies (and respective convex-hulls) represented in blue

and red respectively for τin = τout = 10; In a black star and diamond are represented respectively the supply

rates that lie inside and outside the convex-hull of metabolic strategies; Bottom left: same as previous but with

τin = 10 and τout = 1; (b): adaptative metabolic strategies, τin = τout = 10; (c): fixed metabolic strategies,

τin = τout = 10; (d): adaptative metabolic strategies, τin = 10 and τout = 1; (e): fixed metabolic strategies,

τin = 10 and τout = 1.
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Of course, as species have a certain dynamic, so do their surroundings. In nature, resources are
subject to large fluctuations over time, with many factors, for example the seasons. Pacciani-Mori et
al. tested the robustness of an ecosystem subject to these fluctuations and the importance of having
adaptative mechanisms to react to them. They considered variable supply rates with some periodicity
where their values would lie inside the convex-hull of metabolic strategies (sin) for a time τin and then
change to another outside (sout) for a time τout.

In the cases where the species had the ability to adapt to the fluctuations of nutrient supplies,
using equation 9, we can see that they all survived (fig. 8 middle), only varying the population with
the same periodicity as the supply rates did. However, when removing the adaptation system, by
fixing the metabolic strategies in time, this behavior changes (fig. 8 right). If the supply rates lie
outside the convex-hull of metabolic strategies for too long, the coexistence becomes compromised
(fig. 8 top right). Species can only coexist as long as the time outside the convex-hull, τout is small
compared to τin (fig. 8 bottom right). We can also observe that the metabolic strategies evolve in a
way that they include the supply rates sout when they spend enough time outside the convex-hull (fig.
8 top left), and that it does not happen when that time interval is small (fig. 8 bottom left).

This model was able to explain both the violation of the Competitive Exclusion Principle and the
diauxic growth.

The populational models developed until now allow us to describe the growth rate of populations
in terms of parameters but they lack an explanation for what mechanisms originate variations on the
rate of growth. Also, they do not take into account the necessity of more than one nutrient for growth.

3 Thesis planning

To describe the growth, adaptation and survival of m species and p nutrients, Posfai et al. introduced
a mathematical model based on a modified MacArthur growth model where the nutrient consumption
is described by the classical Tessier-Monod sigmoidal growth function. In his PhD thesis, Monod
calibrated the growth of the bacteria E. coil based on this approach. The Tessier-Monod function
has been used in different modeling contexts (Monod [4], Dilão [14], Hwa [12]). However, a clear
calibration in complex environments with different resources is lacking.

As it is well known, the fit of a model to some experimental data does not validate the model. The
validation results from the consistency of the biological and physical assumptions of the model (internal
consistency) and its ability to predict new phenomena. The numerical modeling work of Posfai et al.,
[16], predicted some important properties of multi-species and multi-nutrient communities, namely,
the existence of metabolic strategies for species in a community, the possibility of coexistence if a
convex envelop property is observed and the importance of key species for the community stability.
All these hypothesis need a biological validation.

On the other hand, in the Tessier-Monod modeling approach, without considering death rates, the
sigmoidal growth law does not allow for the explosion of the number of individuals of a single species in
the presence of continuous supply of resources. This is an inconsistency of the Tessier-Monod model.
In this context, the mass action approach is an alternative (Dilão, [14]) that should be compared with
the Posfai et al. approach, [16]. Another issue that should be investigate is related with the absence
of diauxies in the simulations of Posfai et al. model. To solve this problem, Pacciani-Mori et al. [17]
introduced a dynamic metabolic strategy with the assumption that bacteria would maximize their
growth rate. This mechanism should be analyzed in detail experimentally.

The goal of this project is to preform growth experiments in a community of two (or three)
species, in a stirred reactor tank experiment, with at least two food sources. We want to model and
calibrate the laws of population growth, and to analyze the possibility of sustained coexistence and
the circumstances leading to competitive exclusion. Our approach will give precise answers to the
right approach to simulate bacterial populations growth and precise calibration of model parameters.
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From a more theoretical point of views, this will answer the questions of Hwa on the existence of first
principles growth models.

Other questions we would like to answer are related with complementarity of food sources. If there
are no complementary food sources, we would expect that a species with one nutrient would attain
a steady state value, say n1, and if there are two nutrients in the media, the steady state should be
n2 > n1. Thus, we raise the question: do complementary nutrients for growth exist?

Our thesis calendar will be divided into five tasks:

1. Development of new mathematical models describing multi-species and multi-nutrient growth,
in order to eliminate inconsistencies in the growth models — 1 month.

2. Development of new mathematical models to explain diauxies without a maximization principle
but with dynamic metabolic strategies — 1 month.

3. Experimental planning to calibrate and validate the mathematical models in colonies of E. Coli
— 1 month.

4. Laboratory experiments — 2 months.

5. Thesis writing — 1 month.

Tasks 3 and 4 will be done in the experimental facility of Isabel Gordo at Instituto Gulbenkian de
Ciência.
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