

Evolutionary Dynamics of Signaling Games

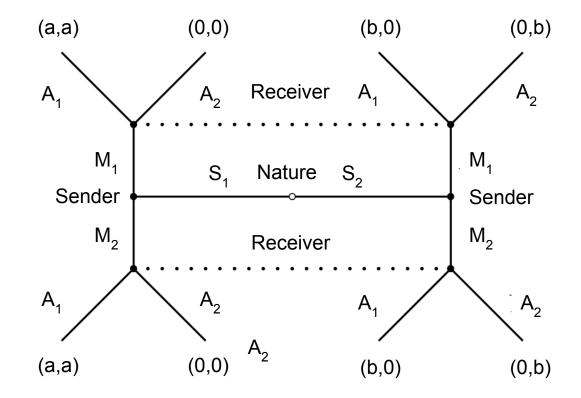
Author: Diogo Pires

Supervisors: Francisco C. Santos José Luís Martins

Problems

- →The dilemma under communication: signaling in a honest way does not seem to be the optimal choice all the time. Should it naturally emerge? Where exactly does its emergence come from?
- → Studying large populations of signalers becomes increasingly difficult.
 - → Handicap Principle
 - Solutions:
- → Reputation
- → Networks

Questions


- I. How can signaling evolve?
- II. Can we assess how much time an evolutionary system is expected to spend in each signaling equilibria?
- III. What's the role of (dynamical) structured populations in the emergence of signaling systems?

- → Signaling Game: conflicting interests, cheap-talk, symmetric version
- → Finite Populations with stochastic update rule, using Fermi distribution from statistical mechanics
- → Small Mutation Limit
- → Active Linking

→ Signaling Game in its extensive form.

→ Signaling Game: conflicting interests, cheap-talk.

	S ₁	S ₂
A ₁	(a,a)	(0,b)
A ₂	(0,0)	(b,0)

 S_1 : Coinciding Interests S_2 : Conflicting Interests

a,b>0

→Signaling Game: conflicting interests, cheap-talk, symmetric version.

	SS	SD
SS	(2a+b, 2a+b)/4	(2a, 2a+2b)/4
SD	(2a+2b, 2a)/4	(2a+b, 2a+b)/4

SS : Signaling System SD : Signaling Dishonestly

a,b>0

→Finite Populations with stochastic update rule, using Fermi distribution from statistical mechanics.

$$p(A \rightarrow B) = \frac{1}{1 + e^{-\beta(\Pi_B(k) - \Pi_A(k))}}$$

→Small Mutation limit μ →0:

Systems will spend most of the time in monomorphic populations (players acting collectively the same way), and a small amount in transient ones;

Transitions between monomorphic states A and B are computable.

$$\rho_{A,B} = \left[\sum_{i=0}^{Z-1} \left(\prod_{k=1}^{i} e^{-\beta(\Pi_{B}(k) - \Pi_{A}(k))} \right) \right]^{-1}$$

→ Small Mutation limit μ →0:

Transition matrix of the approximate Markov Process.

→ Active Linking

Players have propensity to form links with each other α_A ; Links have a probability to vanish γ_{AB} ; Limit of the equilibrium network $T_a \ll T_s$; Payoffs obtained by players are altered, bringing new dynamics.

$$\pi_{AB}' = \frac{\alpha_A \alpha_B}{\alpha_A \alpha_B + \gamma_{AB}} \pi_{AB}$$

Questions

- I. How can signaling evolve?
- II. Can we assess how much time an evolutionary system is expected to spend in each signaling equilibria?
- III. What's the role of (dynamical) structured populations in the emergence of signaling systems?

Work Plan

- → Revision of literature;
- \rightarrow Development of the analytic framework;
- → Obtain the first results: transition probabilities and stationary distributions between monomorphic states;
- → Extension of the framework to active linking;
- \rightarrow Discussion and comparative analysis of results;
- \rightarrow Thesis writing and submission

