Precision

Measurements of Electroweak Theory

> Ismet Siral University of Oregon On Behalf of ATLAS Collaboration

> > Epiphany 2020 *10 January 2020*

Introduction

- Doing precision measurements at hadronic colliders are challenging.
 - Experimental: Pile-up, Detector Uncertainties etc.
 - Theory: PDF's, Other Theoretical Uncertainties etc.
- ATLAS has been able to successfully tackle this problem .
- At 7 TeV **ATLAS** has collected 4.1 fb⁻¹ and at 8 TeV **ATLAS** collected 20.2 fb⁻¹ of good for physics data.
 - Effective Leptonic Weak Angle Mixing: <u>ATLAS-CONF-2018-037</u> (8 TeV 20.2 fb⁻¹)
 - W Mass Measurement: Eur. Phys. J. C 79 (2019) 535 (7 TeV 4.6 fb⁻¹)
- At 13 TeV Till now the ATLAS has collected 139 fb⁻¹ collisions data.
- ATLAS can now do polarization measurements on electroweak gauge-bosons:
 - Inclusive WZ polarization and X-section measurements: <u>Eur. Phys. J. C 79 (2019) 535 (13 TeV 36.1 fb⁻¹)</u>
- And **ATLAS** started tackling rare electroweak processes.
 - Observation EWK-ZZjj: <u>ATLAS-CONF-2019-033 (13 TeV 139 fb-1)</u>
 - Observation of EWK-ssWWjj: <u>Phys. Rev. Lett. 123 (2019) 161801 (13 TeV 36.1 fb⁻¹)</u>
 - Observation of EWK-WZjj: <u>Phys. Lett. B 793 (2019) 469</u> (13 TeV 36.1 fb⁻¹)
 - Evidence EWK-Zγjj <u>arXiv:1910.09503</u> [Submitted to PLB] (13 TeV 36.1 fb⁻¹)
 - First Evidence of WVV Production: <u>Phys. Lett. B 798 (2019) 134913 (13 TeV 79.8 fb⁻¹)</u>

ATLAS Standard Model X-Section Measurements

Today, we will cover only a sub-set of ATLAS results.

Standard Model Production Cross Section Measurements Status: November 2019 σ [pb] 10^{11} **ATLAS** Preliminary Theory Run 2 $\sqrt{s} = 5,13$ TeV 10⁶ LHC pp $\sqrt{s} = 5$ TeV -0-In addition: Data 0.025 fb⁻¹ 10⁵ W mass measurement LHC pp $\sqrt{s} = 13$ TeV • Effective Leptonic $n_j \ge 0$ 10^{4} Data 3.2 - 79.8 fb⁻¹ Weak Mixing Angle measurement 10³ $n_j \ge 0$ -0- $Z\gamma EWK$ t-chan 0 10^{2} -**O**-total 0 -0-ggF H→WW 10^{1} $n_i \ge 3$ Ú. H→bb $n_i \ge 4$ 1 $n_i \ge 5$ VRF $n_i \ge 6$ 10^{-1} H→WW $H \rightarrow \gamma \gamma$ $n_i \ge 7$ 10^{-2} $H \rightarrow ZZ \rightarrow 4$ W[±]W[±] 10^{-3} WZ Jets Dijets wwz Zjj pp W Ζ WW WZ ΖZ Н $t\bar{t}W$ $t\bar{t}Z$ $t\bar{t}H$ $t\bar{t}\gamma$ VVii γ tī t www EWK EWK tot. tot. tot. tot. tot. tot. tot. tot. tot.

Ismet Siral, University Of Oregon

<u>ATL-PHYS-PUB-2019-024</u>

3

Measurement of Effective Leptonic Weak Mixing Angle

ATLAS-CONF-2018-037

Measurement of Effective Leptonic Weak Mixing Angle

Leading Order Differential Cross-Section of $pp \to Z/\gamma^* \to \ell^+ \ell^-$

$$\frac{d\sigma}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell} d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell}} \begin{cases} (1 + \cos^{2}\theta) + \frac{1}{2} A_{0}(1 - 3\cos^{2}\theta) + A_{1} \sin 2\theta \cos\phi \\ + \frac{1}{2} A_{2} \sin^{2}\theta \cos 2\phi + A_{3} \sin\theta \cos\phi + A_{4} \cos\theta \\ + A_{5} \sin^{2}\theta \sin 2\phi + A_{6} \sin 2\theta \sin\phi + A_{7} \sin\theta \sin\phi \end{cases}.$$

• The differential equation is composed of nine harmonic polynomials with 8 dimensionless angular coefficients (A_{0.7})
• Coefficients A_{3.4} are sensitive to $\sin^{2}\theta_{eff}^{\ell}$, but A_{3} is much weaker then A_{4}.
• A_{4} can be modeled as a functions of $\sin^{2}\theta_{eff}^{\ell}$.

ATLAS-CONF-2018-037

Measurement of Effective Leptonic Weak Mixing Angle

Reconstructing the Z Boson and Extracting the angular coefficients

- The analysis has been constructed at 8 TeV with an integrated luminosity of 20.2 fb⁻¹
- In order to reconstruct the Z boson:
 - Two opposite leptons are selected and categorized according to their orientation. (Forward (f) or Central (c))
 - $e_{\mathrm{C}}^{\pm}e_{\mathrm{C}}^{\mp}, \mu_{\mathrm{C}}^{\pm}\mu_{\mathrm{C}}^{\mp}, e_{c}^{\pm}e_{\mathrm{f}}^{\mp}$
 - These leptons are used to reconstruct a Z boson mass and a Z window cut is applied.
 - $70 < m_{\ell \ell} < 125 \text{ GeV}$
 - All lepton categories are treated separately and binned in $m_{\ell\ell}$ and $|y_{\ell\ell}|$.

ATLAS-CONF-2018-037

Measurement of Effective Leptonic Weak Mixing Angle Extracted A₄ Value

- The A₄ values is extracted through a template fit.
- A template is created for each A_i value in 4 dimensions: $\cos \theta$, ϕ , $m_{\ell\ell}$ and $y_{\ell\ell}$
- The number of expected events in a bin (n) is given by:

$$N_{\exp}^{n}(A,\sigma,\theta) = \left\{\sum_{j=0}^{N_{\text{bins}}} \sigma_{j} \times L \times \left[t_{8j}^{n}(\beta) + \sum_{i=0}^{7} A_{ij} \times t_{ij}^{n}(\beta)\right]\right\} \times \gamma^{n} + \sum_{B}^{\text{bkgs}} T_{B}^{n}(\beta),$$

- The fits are done for both individual channels as well as combined fit.
- The most sensitive channel is $e_c^{\pm} e_f^{\mp}$

Measurement of Effective Leptonic Weak Mixing Angle

Measured Effective Leptonic Weak Mixing Angle

Combined $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 \text{(stat.)} \pm 0.00024 \text{(PDF)} \pm 0.00016 \text{(syst.)}$

Ismet Siral, University Of Oregon

<u>ATLAS-CONF-2018-037</u>

8

Measurement of the W-boson mass in pp collisions at 7 TeV with the ATLAS detector Eur. Phys. J. C 78 (2018) 110

Measurement of the W-Boson Mass

- Measuring the W boson mass is really challenging in LHC.
 - Exact mass of the W-boson cannot be directly extracted since the neutrinos go undetected.

Measurement of the W-Boson Mass

Template Fits and the Extraction of the W-Boson Mass

- This analysis is conducted at 7 TeV with the luminosity of 4.6 fb⁻¹
- Template fitting to extract the W-boson mass is simple but comes with large uncertainties:
 - Detector Uncertainties,
 - Physics Modelling: PDF, W Prod, W Decay ...
- To reduce these uncertainties as well as to reduce the background events, certain kinematic requirements are applied
 - $p_T^{\ell} > 30 \text{ GeV}$, $E_T^{\text{miss}} > 30 \text{ GeV}$
 - $m_T^W > 60 \text{ GeV}$
 - $p_T^W < 30 \text{ GeV}$
- Leptonic Z-boson decay is used to constrain the experimental uncertainties as well to test the W-mass extraction method.
- Recoil calibration is done to correct m_T modeling.

Measurement of the W-Boson Mass

Results

• $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp sys.)} \pm 14 \text{ (mod. syst.)} \text{ MeV} = 80370 \pm 19 \text{ MeV}$

• The measured values is compatible with the world average with similar precision made by the CDF and D0 collaborations.

Measurement of W[±]Z production cross sections and gauge boson polarisation in pp collisions at 13TeV with the ATLAS detector.

Eur. Phys. J. C 79 (2019) 535

WZ Prod. X-Sections and Gauge Boson Polarisations

- The longitudinal polarization of the W and Z bosons are the results of the EWSB.
 - While the W polarization are helpful for testing CP violation.
- WZ production channel is sensitive to these polarization observables, due to its reliance on gauge boson self interactions.
- In addition the asymmetry between W^+Z and W^-Z are sensitive to PDF distributions.
- The analysis is conducted at 13 TeV with integrated luminosity 36.1 fb⁻¹.
- Events are selected according to:
 - Exactly 3 Leptons, $W \to \ell^{\pm}, Z \to \ell^+ \ell^-$
 - $|m_{Z \to \ell \ell} m_Z| < 10 \text{ GeV}$
 - $m_T^W > 30 \text{ GeV}$
- The using the extracted yields, the fiducial cross-section is calculated to be: $\sigma_{WZ \rightarrow lvll}^{\text{fid}} = 63.7 \pm 1.0 \text{ (stat.)} \pm 2.3 \text{ (exp. syst.)} \pm 0.3 \text{ (mod. syst)} \pm 1.4 \text{ (lumi.)} \text{ fb}$
- The total cross-section is estimated to be: $\sigma_{WZ}^{\text{tot.}} = 51.0 \pm 0.8 \text{ (stat.)} \pm 1.8 \text{ (exp. syst.)} \pm 0.9 \text{ (mod. syst.)} \pm 1.1 \text{(lumi.)} \text{ pb}$

Ismet Siral, University Of Oregon

14

WZ Prod. X-Sections and Gauge Boson Polarisations Precision Measurements

• Polarisation of the gauge bosons can be determined using the angular distributions of the decay products.

For W decay:

$$\frac{1}{\sigma_{WZ}}\frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8}f_L(1\mp\cos\theta_{\ell,W})^2 + \frac{3}{8}f_R(1\pm\cos\theta_{\ell,W})^2 + \frac{3}{4}f_0\sin^2\theta_{\ell,W} + \frac{3}{4}f_0\sin^2\theta_{\ell,W}$$

Where $f_{L,R,0}$ are left handed, right handed and longitudinal helicity fractions.

• A template fit of three different helicity states is used to extract the helicity fractions in the differential distributions.

			f_0					f_{τ} –	f _P		T	L- IR
	Data	Powheg+P	YTHIA	MATRIX		Data P		Powheg+F	POWHEG+PYTHIA		IX	
W^+ in W^+Z	$0.26\pm~0.08$	0.233 \pm	0.004	$0.2448\pm$	0.0010	-0.02 \pm	0.04	0.091 \pm	0.004	$0.0868\pm$	0.0014	
W^- in W^-Z	$0.32\pm~0.09$	0.245 \pm	0.005	$0.2651\pm$	0.0015	-0.05 \pm	0.05	-0.063 \pm	0.006	-0.034 \pm	0.004	
W^{\pm} in $W^{\pm}Z$	$0.26\pm~0.06$	$0.2376\pm$	0.0031	$0.2506\pm$	0.0006	$-0.024\pm$	0.033	$0.0289\pm$	0.0022	$0.0375\pm$	0.0011	
$Z \text{ in } W^+ Z$	$0.27\pm~0.05$	0.225 \pm	0.004	$0.2401\pm$	0.0014	-0.32 \pm	0.21	-0.297 \pm	0.021	-0.262 \pm	0.009	
Z in W^-Z	$0.21\pm~0.06$	0.235 \pm	0.005	$0.2389\pm$	0.0015	-0.46 \pm	0.25	$0.052~\pm$	0.023	$0.0468\pm$	0.0034	
$Z \text{ in } W^{\pm} Z$	$0.24\pm~0.04$	$0.2294\pm$	0.0033	$0.2398\pm$	0.0014	-0.39 \pm	0.16	-0.156 \pm	0.016	-0.135 \pm	0.006	
												15

Ismet Siral, University Of Oregon

-0.6 -0.4 -0.2

0.6

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

-0.8

<u>–</u>0.2

0.6**⊢ ATLAS**

-0.1

√s = 13 TeV, 36.1 fb⁻¹

0

4*TLAS*

√s = 13 TeV, 36.1 fb⁻

Data

MATRIX

W[±] polarisation in W[±]Z

Data

MATRIX

Z polarisation in W[±]Z

0

0.2

0.4

0.2

Powheg+Pythia

- 68% CL of f_0 and f_1 - f_R

 \dots 95% CL of f₀ and f₁-f_B

0.3

0.4

0.1

Powheg+Pythia

- 68% CL of f_0 and f_L - f_R --- 95% CL of f_0 and f_L - f_R

<u>_</u>о

Vector Boson Scattering Studies

Vector Boson Scattering

- With the discovery of the Higgs, precision measurement of the electroweak triple and quartic gauge couplings offers us key to probe EWSB.
- An example is the longitudinal WW scattering. W_LW_L -> W_LW_L

- The VBS channels are really promising to study EW triple and quartic gauge couplings.
 - Good signal-to-background ratio.
 - Possible to separate the QCD and EWK components

Vector Boson Scattering

• With the discovery of the Higgs, precision measurement of the electroweak triple and quartic gauge couplings offers us key to probe EWSB.

• An example is the longitudinal WW scattering. $W_LW_L \rightarrow W_LW_L$

 $\int_{-\infty}^{\infty} + \int_{Z/\gamma*}^{\infty} \int_{-\infty}^{\infty} + \int_{-\infty}^{Z/\gamma*} \int_{-\infty}^{\infty} \propto 1/m_W^2(s+t)$

 $\sum_{W^{\pm}}^{W^{\pm}} \sum_{H^{\pm}}^{W^{\pm}} \left\{ \sum_{W^{\pm}}^{W^{\pm}} + \sum_{W^{\pm}}^{W^{\pm}} \sum_{W^{\pm}}^{W^{\pm}} \right\} \propto -\frac{1}{m_{W}^{2}} \left(\frac{s^{2}}{s - m_{H}^{2}} + \frac{t^{2}}{t - m_{H}^{2}} \right)$

We are not there yet to measure $W_LW_L \rightarrow W_LW_L$, but we now have access to WW final states.

Observation of electroweak production of a same-sign W-boson pair in association with two jets in pp collisions at 13 TeV with the ATLAS detector

Phys. Rev. Lett. 123 (2019) 161801

Observation of EWK Same-Sign WW Production

Event Selection

- This study is done at 13 TeV with with an integrated luminosity of 36.1 fb⁻¹.
 - The first evidence for the EWK ssWW processes 8 TeV by ATLAS: Phys. Rev. Lett.113, 141803 (2014)
 - The first observation for the EWK ssWW processes at 13TeV by CMS: Phys. Rev. Lett.120, 081801 (2018)

Ismet Siral, University Of Oregon

20

Observation of EWK Same-Sign WW Production

Observed and Expected Fiducial Cross-Sections

 $\sigma_{obs}^{fid} = 2.89^{+0.51}_{-0.48} (\text{stat.})^{+0.24}_{-0.22} (\text{exp. syst.})^{+0.14}_{-0.16} \text{mod. syst.}^{+0.08}_{-0.06} (\text{lumi.}) \text{ fb}$ Background only hypothesis has been rejected with a significance of 6.5σ (4.4 σ exp. with Sherpa)

Observation of electroweak W[±]Z boson pair production in association with two jets in pp collisions at 13TeV with the ATLAS Detector

Phys. Lett. B 793 (2019) 469

Observation of VBS Production of WZ

- In addition to the inclusive WZ cross-section measurement, the VBS measurement is also conducted.
- The cuts are really similar with an additional jet requirements.
- A BDT is implemented to split the QCD and EW production of the WZ.
 - The BDT variable is then used to extract the significance.

 $\mu_{WZjj}^{\text{EWK}} = 1.77^{+0.44}_{-0.40} \text{ (stat.)}_{-0.12}^{+0.15} \text{ (exp.)}_{-0.13}^{+0.15} \text{ (mod.)}_{-0.02}^{+0.04} \text{ (lumi)}$ Backg. only hypothesis is rejected with 5.3 σ (3.2 σ expected) $\sigma_{WZjj-\text{EW}}^{\text{fid.}} = 0.57^{+0.14}_{-0.13} \text{ (stat.)}_{-0.04}^{+0.05} \text{ (exp.)}_{-0.04}^{+0.05} \text{ (mod.)}_{-0.01}^{+0.01} \text{ (lumi) fb}$ $\sigma_{WZjj}^{\text{fid.}} = 1.68 \pm 0.25 \text{ fb}$

Event Selection

- Exactly three leptons
- One Z boson candidate: $|m_{\ell\ell}^{\text{SFOS}} - M_Z| < 10 \text{ GeV}$
- One W boson candidate: $m_T^W > 30 \text{ GeV}$

Evidence for electroweak production of two jets in association with a Zy pair in collisions at 13 TeV with the ATLAS detector

arXiv:1910.09503 [Submitted to PLB]

Background only hypothesis excluded with 4.1 σ (4.1 σ expected).

Ismet Siral, University Of Oregon

Evidence of VBS Production of Zy

Conducted at 13 TeV with an integrated lumi. 36.1 fb⁻¹

- Similar to other VBS productions, Zγ is sensitive to triple and quartic gauge boson couplings.
- Event selection:
 - Two same-flavor opposite sign leptons: $e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}$
 - Two back-to-back high- p_T jets with $m_{ii} > 150 \text{ GeV}$
 - $m_{\ell\ell} > 40 \text{ GeV}$ and $(m_{\ell\ell} + m_{\ell\ell\gamma}) > 182 \text{ GeV}$
- Produced by both Electroweak and QCD induced processes.
 - In order to differentiate these two processes a BDT based discriminant is used.

$$\mu_{Z\gamma jj-EW} = 1.00 \pm 0.19 \text{ (stat.)} \pm 0.13 \text{ (syst.)}^{+0.13}_{-0.10} \text{ (mod.)}$$

 $\sigma_{Z\gamma ii-EW}^{\text{fid}} = 7.8 \pm 1.5 \text{ (stat.)} \pm 1.0 \text{ (syst.)}_{-0.8}^{+1.0} \text{ (mod.) fb}$

arXiv:1910.09503

Consistent with LO SM Theory !!

25

Evidence of VBS Production of Zy Conducted at 13 TeV with an integrated lumi. 36.1 fb⁻¹ Similar to other VBS productions, $Z\gamma$ is sensitive to triple $\frac{2}{2} 900 \text{ F}$ at as an Fiducial $Z(\rightarrow \ell \ell)\gamma$ cross-section is also measured in ATLAS in a separate paper as: $\sigma_{\text{fid.}} = 533.7 \pm 2.1$ (stat.) ± 12.4 (syst.) ± 9.1 (lumi.) fb (arXiv:1911.04813) core **Consistent with LO SM Theory !!** $\sigma_{Z_{XII}-EW}^{\text{fid}} = 7.8 \pm 1.5 \text{ (stat.)} \pm 1.0 \text{ (syst.)}_{-0.8}^{+1.0} \text{ (mod.) fb}$ Background only hypothesis excluded with 4.1 σ (4.1 σ expected).

Ismet Siral, University Of Oregon

arXiv:1910.09503

26

Observation of electroweak production of two jets in association with a Z-boson pair in pp collisions at 13 TeV with the ATLAS detector

ATLAS-CONF-2019-033

Observation of VBS Production of ZZ Conducted at 13 TeV with an integrated lumi. 139 fb⁻¹

- The search for the VBS ZZ production is conducted in two decay channels: $ZZjj \rightarrow \ell\ell\ell\ell jj, ZZjj \rightarrow \ell\ell\nu\nu jj$
 - $ZZjj \rightarrow \ell\ell\ell\ell jj$:
 - 4 Leptons with smallest $|m_{\ell\ell}^1 - m_z| + |m_{\ell\ell}^2 - m_z|$
 - Both Z candidates: $66 < m_{\ell\ell} < 116 \text{ GeV}$
 - Two high- p_T jets with $m_{jj} > 300 \text{ GeV}$ and $\Delta Y(jj) > 2$
- A BDT is trained to separate the QCD and EWK production modes.

	$\mu_{ m EW}$	$\mu_{ m QCD}^{\ell\ell\ell\ell jj}$	Significance Obs. (Exp.)
$\ell\ell\ell\ell jj$	1.54 ± 0.42	0.95 ± 0.22	5.48 (3.90) σ
$\ell\ell u u jj$	0.73 ± 0.65	-	$1.15 (1.80) \sigma$
Combined	1.35 ± 0.34	0.96 ± 0.22	5.52 (4.30) σ

	Measured fiducial σ [fb]	Predicted fiducial σ [fb]
$\ell\ell\ell\ell jj \mid$	$1.27 \pm 0.12(\text{stat}) \pm 0.02(\text{theo}) \pm 0.07(\text{exp}) \pm 0.01(\text{bkg}) \pm 0.03(\text{lumi})$	$ 1.14 \pm 0.04 (\text{stat}) \pm 0.20 (\text{theo}) $
$\ell\ell u u jj$	$1.22 \pm 0.30(\text{stat}) \pm 0.04(\text{theo}) \pm 0.06(\text{exp}) \pm 0.16(\text{bkg}) \pm 0.03(\text{lumi})$	$1.07 \pm 0.01 (\text{stat}) \pm 0.12 (\text{theo})$

- $ZZjj \rightarrow \ell \ell \nu \nu jj$:
 - Exactly 2 leptons with $80 < m_{\ell\ell} < 110 \text{ GeV}$
 - E_T^{miss} sig. > 12
 - Two high-p_T jets with $m_{ii} > 400$ GeV and $\Delta Y(jj) > 2$

<u>ATLAS-CONF-2019-033</u>

Evidence for the production of three massive vector bosons with the ATLAS detector

Phys. Lett. B 798 (2019) 134913

Evidence for Tri-Boson Production

 $WWW \rightarrow \ell \nu \ell \nu \ell \nu \ell \nu WZZ \rightarrow qq\ell\ell\ell\ell \quad WWZ \rightarrow \ell \nu \ell \nu \ell \ell \ell WWW \rightarrow \ell \nu \ell \nu qq \quad WZZ \rightarrow \ell \nu qq\ell\ell \quad WWZ \rightarrow \ell \nu qq\ell\ell$

- Each channel has an individual significance of $\sim 1-2 \sigma$.
- These final states are sensitive to triple gauge couplings, quartic gauge couplings and Higgs production.
 - Only cross-section measurements are made
 - aQGCs is considered for the full data-set.

Evidence for Tri-Boson Production

Evidence for Tri-Boson Production

Conclusion

- ATLAS is now able to compete in precision measurements with previous experiments. $(m_W \text{ and } \sin^2 \theta_{\text{eff}}^{\ell})$
 - More results are soon to follow with 8 TeV and 13 TeV datasets.
 - Special studies are being conducted to reduce both theoretical and experimantal uncertainties.
- Triple and Quartic gauge couplings are being probed now, and we are getting the first evidences/ observation of EW di-boson / tri-boson final states.
 - In the long term, we will reach observation level for majority of these final states and these results will allow us to probe the EWSB.

ATLAS Standard Model X-Section Measurements

Today, we will cover only a sub-set of ATLAS results.

Standard Model Production Cross Section Measurements Status: November 2019 σ [pb] 10^{11} **ATLAS** Preliminary Theory Run 2 $\sqrt{s} = 5,13$ TeV 10⁶ LHC pp $\sqrt{s} = 5$ TeV -0-In addition: Data 0.025 fb⁻¹ 10⁵ W mass measurement LHC pp $\sqrt{s} = 13$ TeV • Effective Leptonic $n_j \ge 0$ 10^{4} Data 3.2 - 79.8 fb⁻¹ Weak Mixing Angle measurement 10³ $n_j \ge 0$ -0- $Z\gamma EWK$ t-chan 0 10^{2} -**O**-total 0 -0-ggF H→WW 10^{1} $n_i \ge 3$ Ú. H→bb $n_i \ge 4$ 1 $n_i \ge 5$ VRF $n_i \ge 6$ 10^{-1} H→WW $H \rightarrow \gamma \gamma$ $n_i \ge 7$ 10^{-2} $H \rightarrow ZZ \rightarrow 4$ W[±]W[±] 10^{-3} WZ Jets Dijets wwz Zjj pp W Ζ WW WZ ΖZ Н $t\bar{t}W$ $t\bar{t}Z$ $t\bar{t}H$ $t\bar{t}\gamma$ VVii γ tī t www EWK EWK tot. tot. tot. tot. tot. tot. tot. tot. tot.

Ismet Siral, University Of Oregon

<u>ATL-PHYS-PUB-2019-024</u>

34

Backup Slides

The Large Hadron Collider

- The LHC is a 27km particle collider that can collide protons and lead ions.
- Protons are accelerated to:
 - Linac 2 50 MeV
 - PS 25 GeV
 - BOOSTER -1.4 GeV
 - SPS 450 GeV
 - LHC 6.5 TeV
- It houses the experiments:
 - ATLAS, CMS, ALICE, LHCb
 - TOTEM, LHCf, MoEDAL

Parameters	2010	2011 - 2012	2015 - 2018	Design
Beam Energy [TeV]	3.5	4	6.5	7
Integrated Luminosity [fb ⁻¹]	0.048	28.3	156	
Max Peak Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	0.021	0.77	2.14	1
Bunch Spacing [ns]	150	50	25	25

Ismet Siral, University Of Oregon

* Image from http://spiff.rit.edu/richmond/asras/lhc/many_rings.gif
The ATLAS Experiment

25m-

• The ATLAS Detector is composed of 4 major systems:

- Inner Detector
 - The inner detector aims to track charged particles and to measure their momenta.
- Calorimeters
 - Calorimeters measure the energy of incoming particles.
- Muon Spectrometer
 - The muon spectrometer tracks the particles that penetrate the calorimeters and measure their momenta.

Magnet System

- The magnet system provides magnetic field to the inner detector and the muon spectrometer.
 - Solenoid Magnet Inner Detector 2 Tesla
 - Toroid Magnet Muon Spectrometer 4 Tesla

Measurement of Effective Leptonic Weak Mixing Angle

Backup Slides

Measurement of Effective Leptonic Weak Mixing Angle

Input Parameters used by Dizet to calculate effective mixing angles

Parameter	Value	Description				
		Measured				
m_Z	$91.1876 \mathrm{GeV}$	Mass of Z boson				
m_H	$125.0~{\rm GeV}$	Mass of Higgs boson				
m_t	$173.0 { m ~GeV}$	Mass of top quark				
m_b	$4.7 \mathrm{GeV}$	Mass of b quark				
1/lpha(0)	137.0359895(61)	QED coupling constant in Thomson limit				
G_{μ}	$1.166389(22) \cdot 10^{-5} \text{ GeV}^{-2}$	Fermi constant from muon lifetime				
		Calculated				
m_W	$80.353 { m GeV}$	Mass of W boson				
$\sin^2 heta_W$	0.22351946	On mass-shell-value of weak mixing angle				
$lpha(m_Z^2)$	0.00775995					
$1/lpha(m_Z^2)$	128.86674175					
ZPAR(6) - ZPAR(8)	0.23175990	$sin^2 \theta^\ell_{eff}(m_Z^2) \ (e,\mu,\tau)$				
ZPAR(9)	0.23164930	$sin^2 \theta^u_{eff}(m_Z^2)$ (up quark)				
ZPAR(10)	0.23152214	$sin^2 \theta^d_{eff}(m_Z^2)$ (down quark)				

Measurement of Effective Leptonic Weak Mixing Angle Uncertainties on A4 Predictions

Ismet Siral, University Of Oregon

Measurement of Effective Leptonic Weak Mixing Angle A4 Predictions With PDF uncertainteis

	70 -	$< m^{\ell\ell} < 80$	${ m GeV}$		$80 < m^{\ell \ell}$	$< 100 { m ~GeV}$	$100 < m^{\ell \ell} < 125 \text{ GeV}$			
$-y^{\ell\ell}$ —	0 - 0.8	0.8 - 1.6	1.6 - 2.5	0 - 0.8	0.8 - 1.6	1.6 - 2.5	2.5 - 3.6	0 - 0.8	0.8 - 1.6	1.6 - 2.5
Central value (NNLO QCD)	-0.0870	-0.2907	-0.5970	0.0144	0.0471	0.0928	0.1464	0.1045	0.3444	0.6807
ΔA_4 (NNLO - NLO QCD)	0.0003	0.0010	0.0021	-0.0001	-0.0005	-0.0009	-0.0015	-0.0007	-0.0022	-0.0041
ΔA_4 (EW)	0.0008	0.0028	0.0056	0.0002	0.0007	0.0015	0.0026	-0.0008	-0.0026	-0.0048
$\Delta \sin^2 \theta_{\text{eff}}^{\ell}$ (EW)	0.00129	0.00130	0.00133	0.00024	0.00024	0.00025	0.00026	-0.00120	-0.00123	-0.00119
		Uncertainties	3		Uncer	tainties			Uncertainties	
Total	0.0035	0.0094	0.0137	0.0007	0.0017	0.0021	0.0021	0.0040	0.0102	0.0140
PDF	0.0034	0.0092	0.0127	0.0007	0.0016	0.0020	0.0019	0.0039	0.0100	0.0131
QCD scales	0.0006	0.0019	0.0052	0.0003	0.0003	0.0004	0.0008	0.0005	0.0022	0.0049

Measurement of Effective Leptonic Weak Mixing Angle

Expected vs Observed uncertainties on A4 and their brakdown based on MMHT14 pseudo-data

$m^{\ell\ell}~({ m GeV})$		70 - 80					80 - 100						100 - 125				
$-y^{\ell\ell}-$		0 - 0	.8	0.8 - 1	.6	1.6 - 2	.5	0 - 0.8		0.8 - 1.6	3	1.6 - 2.5	2.5 - 3	.6	0 - 0.8	0.8 - 1.6	1.6 - 2.5
Prediction (MMH	T14)	-0.08	70	-0.290	7	-0.597	0	0.0144		0.0471		0.0928	0.1464	L .	0.1045	0.3444	0.6807
			U	Incertair	nties			Uncertainties						Uncertainties			
Total		0.017	0.0176 0.0202 0.0404		1	0.0015		0.0015		0.0025	0.0044	Ł	0.0083	0.0098	0.0230		
Stat.		0.015	3	0.0164	L	0.0333	3	0.0013		0.0013		0.0021	0.0036	6	0.0072	0.0078	0.0188
Syst.		0.008	37	0.0117	-	0.0229)	0.0007		0.0008		0.0013	0.0025	6	0.0041	0.0060	0.0133
PDF (meas.)		0.001	.3	0.0049)	0.0048	3	0.0001		0.0002		0.0004	0.0007	7	0.0007	0.0016	0.0043
• p_{T}^{Z} modelling	:	0.000	2	0.0004	Ł	< 0.000	01	< 0.000	1	< 0.0001		< 0.0001	< 0.000)1	0.0001	< 0.0001	0.0002
Leptons		0.002	3	0.0059)	0.0118	3	0.0002		0.0001		0.0003	0.0007	7	0.0014	0.0037	0.0070
Background		0.000	94	0.0011	-	0.0064	ŧ	< 0.0002	1	< 0.0001	L	< 0.0001	0.0001	_	0.0004	0.0017	0.0031
MC stat.		0.008	32	0.0088	3	0.0179)	0.0007		0.0007		0.0012	0.0023	3	0.0038	0.0041	0.0100
		$70 < m^{\ell\ell} < 80 \text{ GeV}$						80	$0 < m^{\ell \ell}$.	< 10	$00 { m GeV}$			100 ·	$< m^{\ell\ell} < 12$	$25~{ m GeV}$	
$ y^{\ell\ell} $	0 -	0.8	0.8 -	- 1.6	1.6	-2.5	0	-0.8	0	0.8 - 1.6	1.	6 - 2.5	2.5 - 3.	6	0 - 0.8	0.8 - 1.6	1.6 - 2.5
Central value	-0.0	0681	-0.2	2684	-0	0.5087	0	0.0195		0.0448	0	0.0923	0.1445		0.0975	0.3311	0.6722
		U	ncert	ainties						Uncertainties				Uncertaintie		es	
Total	0.0	176	0.01	199	0.	0391	0	0.0015		0.0016	0	0.0026	0.0046		0.0086	0.0099	0.0234
Stat.	0.0	149	0.01	160	0.	0324	0	0.0013		0.0013	0	0.0021	0.0037		0.0073	0.0079	0.0188
Syst.	0.0	093	0.01	119	0.	0220	0	.0008		0.0008	0	0.0014	0.0027		0.0045	0.0062	0.0139
PDF (meas.)	0.0	004	0.00	044	0.	0046	0	0.0001		0.0002	0	0.0004	0.0008		0.0009	0.0015	0.0050
$p_{\rm T}^Z$ modelling	0.0	028	0.00	031	0.	0058	0	0.0003		0.0003	0	0.0004	0.0007		0.0014	0.0015	0.0033
Leptons	0.0	044	0.00	063	0.	0095	0	0.0004		0.0003	0	0.0005	0.0010		0.0019	0.0040	0.0071
Background	< 0.	0001	0.00	008	0.	0040	<	0.0001		0.0001	<	0.0001	0.0001		0.0006	0.0015	0.0023
MC stat.	0.0	083	0.00	089	0.	0180	0	0.0007		0.0007	0	0.0012	0.0023		0.0038	0.0042	0.0102

Measurement of Effective Leptonic Weak Mixing Angle

Expected vs Obs. uncertainties on Effective Mixing Angle and their brakdown based on MMHT14 pseudo-data

			1		1	Central value	0.23148	0.23123	0.23166	0.23119	0.23140
Channel	ee_{CC}	$\mu\mu_{CC}$	ee_{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$				U	Incertainties	
Total	65	59	42	48	34	Total	68	59	43	49	36
Stat.	47	39	29	30	21	Stat.	48	40	29	31	21
Syst.	45	44	31	37	27	Syst.	48	44	32	38	29
			Uncert	ainties in measure	ments	q			Uncertain	ties in measureme	ents
PDF (meas.)	7	7	7	7	4	PDF (meas.)	8	9	7	6	4
p_{T}^{Z} modelling	< 1	< 1	1	< 1	< 1	$p_{\rm T}^Z$ modelling	0	0	7	0	5
Lepton scale	5	4	6	3	3	Lepton scale	4	4	4	4	3
Lepton resolution	3	1	3	1	2	Lepton resolution	6	1	2	2	1
Lepton efficiency	1	1	1	1	1	Lepton efficiency	11	3	3	2	4
Electron charge misidentification	< 1	0	< 1	< 1	< 1	Electron charge misidentification	2	0	1	1	< 1
Muon sagitta bias	0	4	0	2	1	Muon sagitta bias	0	5	0	1	2
Background	1	1	1	1	1	Background	1	2	1	1	2
MC. stat.	25	22	18	16	12	MC. stat.	25	22	18	16	12
			Unce	rtainties in predict	tions				Uncertai	nties in prediction	18
PDF (predictions)	36	37	21	32	22	PDF (predictions)	37	35	22	33	24
QCD scales	5	5	9	4	6	QCD scales	6	8	9	5	6
EW corrections	3	3	3	3	3	EW corrections	3	3	3	3	3
EW corrections	3	3	3	3	3	QCD scales EW corrections	6 3	8	9	5	

Channel

 $\| ee_{CC} | \mu\mu_{CC} | ee_{CF} | ee_{CC} + \mu\mu_{CC} | ee_{CC} + \mu\mu_{CC} + ee_{CF}$

Measurement of Effective Leptonic Weak Mixing Angle Data MC Samples

Signature	Generator	PDF	References
$Z/\gamma^* \to \ell\ell$	Powheg-Box + Pythia 8	CT10 NLO	[21,22,23,24,42,41]
$Z/\gamma^* \to \tau \tau$	Sherpa	CT10 NLO	[45, 46, 47, 48]
$t\overline{t}$	Powheg-Box + Pythia 6	CTEQ6L1	
Single top quark (Wt channel)	Powheg-Box + Pythia 8	CTEQ6L1	
Dibosons	Herwig	CTEQ6L1	[49]
$\gamma\gamma \to \ell\ell$	Pythia 8	MRST2004QED NLO	[50]

Measurement of Effective Leptonic Weak Mixing Angle Yields After Cuts

	$70 < m_{ll} < 80 \text{ GeV}$						$70 < m_{ll} < 80 \text{ GeV}$							
$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z					
0-0.8	106 718	0.023	0.015	0.010	0-0.8	124 050	0.019	0.017	0.009					
0.8-1.6	95 814	0.015	0.020	0.010	0.8-1.6	137 984	0.015	0.014	0.014					
1.6-2.5	47 078	0.012	0.041	0.009	1.6-2.5	74 976	0.010	0.011	0.019					
		$80 < m_{b}$	$_{ll} < 100 \mathrm{GeV}$	7			$80 < m_l$	$_{ll} < 100 \text{ GeV}$	7			80 < n	$n_{ll} < 100 \text{ Ge}$	V
$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial ${\cal Z}$	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z
0-0.8	2 697 316	0.003	0.001	< 0.001	0-0.8	2 866 016	0.002	0.001	< 0.001	1.6-2.5	702 142	0.001	0.010	0.017
0.8-1.6	2 084 856	0.002	0.001	< 0.001	0.8-1.6	2 948 371	0.002	0.001	< 0.001	2.5-3.6	441 104	0.001	0.011	0.013
1.6-2.5	839 424	0.002	0.002	< 0.001	1.6-2.5	1 314 890	0.002	0.001	< 0.001					
		100 < m	$c_{ll} < 125 \text{ GeV}$	V			100 < m	$q_{ll} < 125 \text{ GeV}$	V					
$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z	$ y_{ll} $	Data	Top+EW	Multijets	Non-fiducial Z	()no (ontra		tron
0-0.8	106 855	0.034	0.016	0.023	0-0.8	119 650	0.030	0.023	0.023					
0.8-1.6	80 403	0.025	0.019	0.027	0.8-1.6	122 775	0.020	0.015	0.023	0	ne F	orwar	d Ele	ctron
1.6-2.5	28 805	0.015	0.025	0.029	1.6-2.5	55 886	0.010	0.005	0.022	·				

Two Central Electrons

Two Central Muons

Measurement of the W-Boson Mass Backup Slides

Measurement of the W-Boson Mass

Differential Cross -Section Ratios between W and Z

measurements

Measurement of the W-Boson Mass

Modeling Differences Between Different Generators

The discrepancy at high p_T justifies the cut on $p_T < 30$ GeV

Ismet Siral, University Of Oregon

Eur. Phys. J. C 78 (2018) 110

Measurement of the W-Boson Mass Templates

Ismet Siral, University Of Oregon

Eur. Phys. J. C 78 (2018) 110

Measurement of the W-Boson Mass

Final Mass Values For Individual Fits

Channel	$\mid m_W$	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	\mathbf{EW}	PDF	Total
$m_{\mathrm{T}} ext{-}\mathrm{Fit}$	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.
$W^+ \to \mu\nu, \eta < 0.8$	80371.3	29.2	12.4	0.0	15.2	8.1	9.9	3.4	28.4	47.1
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80354.1	32.1	19.3	0.0	13.0	6.8	9.6	3.4	23.3	47.6
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80426.3	30.2	35.1	0.0	14.3	7.2	9.3	3.4	27.2	56.9
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.6	40.9	112.4	0.0	14.4	9.0	8.4	3.4	32.8	125.5
$W^- \to \mu\nu, \eta < 0.8$	80375.5	30.6	11.6	0.0	13.1	8.5	9.5	3.4	30.6	48.5
$W^- \rightarrow \mu\nu, 0.8 < \eta < 1.4$	80417.5	36.4	18.5	0.0	12.2	7.7	9.7	3.4	22.2	49.7
$W^- \to \mu \nu, 1.4 < \eta < 2.0$	80379.4	35.6	33.9	0.0	10.5	8.1	9.7	3.4	23.1	56.9
$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80334.2	52.4	123.7	0.0	11.6	10.2	9.9	3.4	34.1	139.9
$W^+ \to e\nu, \eta < 0.6$	80352.9	29.4	0.0	19.5	13.1	15.3	9.9	3.4	28.5	50.8
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80381.5	30.4	0.0	21.4	15.1	13.2	9.6	3.4	23.5	49.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80352.4	32.4	0.0	26.6	16.4	32.8	8.4	3.4	27.3	62.6
$W^- \rightarrow e\nu, \eta < 0.6$	80415.8	31.3	0.0	16.4	11.8	15.5	9.5	3.4	31.3	52.1
$W^- \to e\nu, 0.6 < \eta < 1.2$	80297.5	33.0	0.0	18.7	11.2	12.8	9.7	3.4	23.9	49.0
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80423.8	42.8	0.0	33.2	12.8	35.1	9.9	3.4	28.1	72.3
$p_{\mathrm{T}} ext{-}\mathrm{Fit}$		1								
$W^+ \to \mu\nu, \eta < 0.8$	80327.7	22.1	12.2	0.0	2.6	5.1	9.0	6.0	24.7	37.3
$W^+ \to \mu \nu, 0.8 < \eta < 1.4$	80357.3	25.1	19.1	0.0	2.5	4.7	8.9	6.0	20.6	39.5
$W^+ \to \mu \nu, 1.4 < \eta < 2.0$	80446.9	23.9	33.1	0.0	2.5	4.9	8.2	6.0	25.2	49.3
$W^+ \to \mu \nu, 2.0 < \eta < 2.4$	80334.1	34.5	110.1	0.0	2.5	6.4	6.7	6.0	31.8	120.2
$W^- \to \mu\nu, \eta < 0.8$	80427.8	23.3	11.6	0.0	2.6	5.8	8.1	6.0	26.4	39.0
$W^- \rightarrow \mu\nu, 0.8 < \eta < 1.4$	80395.6	27.9	18.3	0.0	2.5	5.6	8.0	6.0	19.8	40.5
$W^- \to \mu \nu, 1.4 < \eta < 2.0$	80380.6	28.1	35.2	0.0	2.6	5.6	8.0	6.0	20.6	50.9
$W^- \rightarrow \mu\nu, 2.0 < \eta < 2.4$	80315.2	45.5	116.1	0.0	2.6	7.6	8.3	6.0	32.7	129.6
$W^+ \to e\nu, \eta < 0.6$	80336.5	22.2	0.0	20.1	2.5	6.4	9.0	5.3	24.5	40.7
$W^+ \to e\nu, 0.6 < \eta < 1.2$	80345.8	22.8	0.0	21.4	2.6	6.7	8.9	5.3	20.5	39.4
$W^+ \to e\nu, 1, 8 < \eta < 2.4$	80344.7	24.0	0.0	30.8	2.6	11.9	6.7	5.3	24.1	48.2
$W^- ightarrow e u, \eta < 0.6$	80351.0	23.1	0.0	19.8	2.6	7.2	8.1	5.3	26.6	42.2
$W^- \rightarrow e\nu, 0.6 < \eta < 1.2$	80309.8	24.9	0.0	19.7	2.7	7.3	8.0	5.3	20.9	39.9
$W^- \rightarrow e\nu, 1.8 < \eta < 2.4$	80413.4	30.1	0.0	30.7	2.7	11.5	8.3	5.3	22.7	51.0

Eur. Phys. J. C 78 (2018) 110

Measurement of the W-Boson Mass

2-D Contours of ATLAS meas. of top and W masses

Ismet Siral, University Of Oregon

Eur. Phys. J. C 78 (2018) 110

Backup Slides

Helicity Simulations through POWHEG+PYTHIA

Ismet Siral, University Of Oregon

Eur. Phys. J. C 79 (2019) 535

Charge Asymmetry

• The W^+Z vs. W^-Z asymmetry has also been measured as $\sigma_{W^+Z}/\sigma_{W^-Z} = 1.47 \pm 0.05$ and has been found to be consistent with theory

Ismet Siral, University Of Oregon

Eur. Phys. J. C 79 (2019) 535

Detector level distributions for decay angles

Channel	$C_{W^{-}Z}$	C_{W^+Z}	$C_{W^{\pm}Z}$
eee	0.399 ± 0.003	0.394 ± 0.003	0.396 ± 0.002
μee	0.470 ± 0.004	0.469 ± 0.003	0.469 ± 0.002
$e\mu\mu$	0.548 ± 0.004	0.541 ± 0.003	0.544 ± 0.003
$\mu\mu\mu$	0.660 ± 0.005	0.663 ± 0.004	0.662 ± 0.003

Channel	eee		μee		$e\mu\mu$		$\mu\mu\mu$		All	
Data	127	79	128	81	1671		1929		6160	
Total Expected	1221	± 7	1281	± 6	1653	± 8	1830	± 7	5986	± 14
WZ	922	± 5	1077	± 6	1256	± 6	1523	± 7	4778	± 12
Misid. leptons	138	± 5	34	± 2	193	± 5	71	± 2	436	± 8
ZZ	86	± 1	89	± 1	117	± 1	135	± 1	426	\pm 3
$t\bar{t}$ +V	50.0	± 0.7	54.0	± 0.7	56.1	± 0.7	63.8	± 0.8	225	± 1
tZ	23.1	± 0.4	24.8	± 0.4	28.8	± 0.4	33.5	± 0.5	110	± 1
VVV	2.5	± 0.1	2.8	± 0.1	3.2	± 0.1	3.6	± 0.1	12.0	± 0.2

Systematic Uncertainties

	eee	цее	ецц		Combined	
Relati	ve unce	rtainties	[%]	PPP		
e energy scale	0.2	0.1	0.1	< 0.1	0.1	
e id. efficiency	2.8	1.8	1.0	< 0.1	1.1	
μ momentum scale	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
μ id. efficiency	< 0.1	1.3	1.6	2.8	1.5	
$E_{\rm T}^{\rm miss}$ and jets	0.2	0.2	0.3	0.5	0.3	
Trigger	< 0.1	< 0.1	0.2	0.3	0.2	Data Driver Dealerry
Pile-up	1.0	1.5	1.2	1.5	1.3	Data Driven Backgro
Misid. leptons background	4.7	1.1	4.5	1.6	1.9	is the leading sourc
ZZ background	1.0	1.0	1.1	1.0	1.0	unoortointy
Other backgrounds	1.6	1.5	1.4	1.2	1.4	uncertainty.
Uncorrelated	0.7	0.6	0.7	0.5	0.3	
Total systematic uncertainty	6.0	3.5	5.4	4.1	3.6	
Luminosity	2.2	2.2	2.2	2.2	2.2	
Theoretical modelling	0.5	0.5	0.5	0.5	0.5	
Statistics	3.6	3.3	3.2	2.7	1.6	
Total	7.3	5.3	6.6	5.3	4.5	

Absolute Uncertainties in Helicity Fractions

	W^{\pm} i	n $W^{\pm}Z$	Z in	$W^{\pm}Z$
	f_0	$f_{\rm L} - f_{\rm R}$	f_0	$f_{\rm L} - f_{\rm R}$
e energy scale and id. efficiency μ momentum scale and id. efficiency	$0.0024 \\ 0.0013$	$0.0004 \\ 0.0027$	$0.005 \\ 0.0018$	$0.0021 \\ 0.008$
$E_{\rm T}^{\rm miss}$ and jets	0.0024	0.0010	0.0017	0.005
Pile-up Misid. lepton background	$\begin{array}{c} 0.005 \\ 0.031 \end{array}$	0.00009 < 0.001	$\begin{array}{c} 0.0014 \\ 0.007 \end{array}$	$\begin{array}{c} 0.005 \\ 0.019 \end{array}$
ZZ background Other backgrounds	$\begin{array}{c} 0.009 \\ 0.0012 \end{array}$	$0.0004 \\ 0.0005$	$0.0007 \\ 0.0018$	$\begin{array}{c} 0.0012\\ 0.005\end{array}$
QCD scale PDF Modelling	$0.0008 \\ 0.0011 \\ 0.004$	$\begin{array}{c} 0.0013 \\ 0.0009 \\ 0.007 \end{array}$	$0.0004 \\ 0.00004 \\ 0.0015$	$0.008 < 0.00001 \\ 0.0028$
Total systematic uncertainty Luminosity Statistics	$\begin{array}{c} 0.033 \\ 0.0015 \\ 0.06 \end{array}$	$0.008 < 0.0001 \\ 0.032$	$0.009 < 0.0001 \\ 0.04$	$0.024 \\ 0.0008 \\ 0.15$
Total	0.06	0.033	0.04	0.16

Observation of EWK Same-Sign WW Production

Backup Slides

WW Scattering Cross-sections

Sensitivity for Anomalous Gauge Couplings

Ismet Siral, University Of Oregon

* Plots from https://arxiv.org/abs/1412.8367v2

Observation of EWK Same-Sign WW Production

Other Plots and Yields

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	Combined
WZ	1.48 ± 0.32	$1.09\pm~0.27$	11.6 ± 1.9	7.9 ± 1.4	$5.0~\pm~0.7$	$3.4~\pm~0.6$	30 ± 4
Non-prompt	$2.2~\pm~1.1$	$1.2~\pm~0.6$	$5.9~\pm~2.5$	$4.7~\pm~1.6$	$0.56\pm~0.05$	$0.68\pm~0.13$	15 ± 5
e/γ conversions	1.6 ± 0.4	$1.6~\pm~0.4$	$6.3~\pm~1.6$	4.3 ± 1.1			13.9 ± 2.9
Other prompt	0.16 ± 0.04	0.14 ± 0.04	$0.90\pm~0.20$	$0.63\pm~0.14$	$0.39\pm~0.09$	$0.22\pm~0.05$	$2.4~\pm~0.5$
$W^{\pm}W^{\pm}jj$ strong	$0.35\pm~0.13$	0.15 ± 0.05	$2.9~\pm~1.0$	1.2 ± 0.4	$1.8~\pm~0.6$	$0.76\pm~0.25$	7.2 ± 2.3
Expected background	5.8 ± 1.4	$4.1~\pm~1.1$	28 ± 4	18.8 ± 2.6	$7.7 ~\pm~ 0.9$	$5.1~\pm~0.6$	69 ± 7
$W^{\pm}W^{\pm}jj$ electroweak	$5.6~\pm~1.0$	$2.2~\pm~0.4$	24 ± 5	$9.4~\pm~1.8$	13.4 ± 2.5	$5.1~\pm~1.0$	60 ± 11
Data	10	4	44	28	25	11	122

Ismet Siral, University Of Oregon

Observation of EWK Same-Sign WW Production

Systematics

Source	Impact $[\%]$
Experimental	
Electrons	0.6
Muons	1.3
Jets and $E_{\rm T}^{\rm miss}$	3.2
b-tagging	2.1
Pileup	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

Ismet Siral, University Of Oregon

Observation of EWK WZ Production Backup Slides

Observation of EWK WZ Production

Pre-Post Fit Yields

	SR	WZjj–QCD CR	<i>b</i> -CR	ZZ-CR	
Data	161	213	141	52	
Total predicted	200 ± 41	290 ± 61	160 ± 14	$45.2~\pm~7.5$	
WZjj-EW (signal)	$24.9 \hspace{0.2cm} \pm \hspace{0.2cm} 1.4$	8.45 ± 0.37	$1.36~\pm~0.10$	$0.21\pm~0.12$	
$WZjj-\mathrm{QCD}$	144 ± 41	231 ± 60	$24.4 \ \pm \ 1.7$	1.43 ± 0.22	
Misid. leptons	9.8 ± 3.9	17.7 ± 7.1	30 ± 12	0.47 ± 0.21	Dro_Eit
$ZZjj-\mathrm{QCD}$	8.1 ± 2.2	15.0 ± 3.9	$1.96~\pm~0.49$	35 ± 11	
tZj	6.5 ± 1.2	6.6 ± 1.1	36.2 ± 5.7	0.18 ± 0.04	
$t\bar{t} + V$	4.21 ± 0.76	9.11 ± 1.40	65.4 ± 10.3	$2.8~\pm~0.61$	
$ZZjj-\mathrm{EW}$	1.80 ± 0.45	0.53 ± 0.14	$0.12~\pm~0.09$	$4.1~\pm~1.4$	
VVV	$0.59~\pm~0.15$	0.93 ± 0.23	$0.13~\pm~0.03$	1.05 ± 0.30	
	SR	WZjj–QCD CR	<i>b</i> -CR	ZZ-CR	_
Data	SR 161	WZjj–QCD CR 213	<i>b</i> -CR 141	ZZ-CR 52	
Data Total predicted	$\begin{array}{c} SR \\ 161 \\ 167 \pm 11 \end{array}$	$WZjj - QCD CR$ 213 204 ± 12	b-CR 141 146 ± 11	$\begin{array}{r} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \end{array}$	
Data Total predicted WZjj-EW (signal)	$ SR 161 167 \pm 11 44 \pm 11 $	$WZjj - QCD CR$ 213 204 ± 12 8.52 ± 0.41	b-CR 141 146 ± 11 1.38 ± 0.10	$ \begin{array}{r} ZZ-CR \\ 52 \\ 51.3 \pm 7.0 \\ 0.211\pm 0.004 \end{array} $	
Data Total predicted WZjj-EW (signal) WZjj-QCD	$\begin{array}{c} & SR \\ & 161 \\ 167 & \pm 11 \\ 44 & \pm 11 \\ 91 & \pm 10 \end{array}$	$WZjj - QCD CR$ 213 204 ± 12 8.52 ± 0.41 144 ± 14	$b-CR \\ 141 \\ 146 \pm 11 \\ 1.38 \pm 0.10 \\ 13.9 \pm 3.8 \\ \end{tabular}$	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \end{array}$	
Data Total predicted WZjj-EW (signal) WZjj-QCD Misid. leptons	$SR \\ 161 \\ 167 \pm 11 \\ 44 \pm 11 \\ 91 \pm 10 \\ 7.8 \pm 3.2$	$\begin{array}{c} WZjj - \text{QCD CR} \\ 213 \\ 204 \pm 12 \\ 8.52 \pm 0.41 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \end{array}$	$b-CR \\ 141 \\ 146 \pm 11 \\ 1.38 \pm 0.10 \\ 13.9 \pm 3.8 \\ 23.5 \pm 9.6$	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \end{array}$	
Data Total predicted WZjj-EW (signal) WZjj-QCD Misid. leptons ZZjj-QCD	$\begin{array}{c} & SR \\ & 161 \\ 167 & \pm 11 \\ 44 & \pm 11 \\ 91 & \pm 10 \\ 7.8 & \pm 3.2 \\ 11.1 & \pm 2.8 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$b-CR$ 141 146 ± 11 1.38 ± 0.10 13.9 ± 3.8 23.5 ± 9.6 2.35 ± 0.06	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \\ 40.8 \pm 7.2 \end{array}$	Post-Fit
Data Total predicted WZjj-EW (signal) WZjj-QCD Misid. leptons ZZjj-QCD tZj	$\begin{array}{c} & SR \\ & 161 \\ 167 & \pm 11 \\ 44 & \pm 11 \\ 91 & \pm 10 \\ 7.8 & \pm 3.2 \\ 11.1 & \pm 2.8 \\ 6.2 & \pm 1.1 \end{array}$	$\begin{array}{c c} WZjj - \text{QCD CR} \\ 213 \\ 204 \pm 12 \\ \hline 8.52 \pm 0.41 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \\ 18.3 \pm 1.1 \\ 6.3 \pm 1.1 \\ \end{array}$	$b-CR$ 141 146 ± 11 1.38 ± 0.10 13.9 ± 3.8 23.5 ± 9.6 2.35 ± 0.06 34.0 ± 5.3	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \\ 40.8 \pm 7.2 \\ 0.17 \pm 0.04 \end{array}$	Post-Fit
Data Total predicted WZjj-EW (signal) WZjj-QCD Misid. leptons ZZjj-QCD tZj $t\bar{t} + V$	$\begin{array}{c} & SR \\ & 161 \\ 167 & \pm 11 \\ 44 & \pm 11 \\ 91 & \pm 10 \\ 7.8 & \pm 3.2 \\ 11.1 & \pm 2.8 \\ 6.2 & \pm 1.1 \\ 4.7 & \pm 1.0 \end{array}$	$\begin{array}{c c} WZjj - \text{QCD CR} \\ 213 \\ 204 \pm 12 \\ \hline 8.52 \pm 0.41 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \\ 18.3 \pm 1.1 \\ 6.3 \pm 1.1 \\ 11.14 \pm 0.37 \\ \end{array}$	$b-CR$ 141 146 ± 11 1.38 ± 0.10 13.9 ± 3.8 23.5 ± 9.6 2.35 ± 0.06 34.0 ± 5.3 71 ± 15	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \\ 40.8 \pm 7.2 \\ 0.17 \pm 0.04 \\ 3.47 \pm 0.54 \end{array}$	Post-Fit
Data Total predicted WZjj-EW (signal) WZjj-QCD Misid. leptons ZZjj-QCD tZj $t\bar{t} + V$ ZZjj-EW	$\begin{array}{c} & SR \\ & 161 \\ 167 & \pm 11 \\ 44 & \pm 11 \\ 91 & \pm 10 \\ 7.8 & \pm 3.2 \\ 11.1 & \pm 2.8 \\ 6.2 & \pm 1.1 \\ 4.7 & \pm 1.0 \\ 1.80 & \pm 0.45 \end{array}$	$\begin{array}{c c} WZjj - \text{QCD CR} \\ 213 \\ 204 \pm 12 \\ \hline 8.52 \pm 0.41 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \\ 18.3 \pm 1.1 \\ 6.3 \pm 1.1 \\ 11.14 \pm 0.37 \\ 0.44 \pm 0.10 \\ \end{array}$	$b-CR$ 141 146 ± 11 1.38 ± 0.10 13.9 ± 3.8 23.5 ± 9.6 2.35 ± 0.06 34.0 ± 5.3 71 ± 15 0.10 ± 0.03	$\begin{array}{c} ZZ\text{-CR} \\ 52 \\ 51.3 \pm 7.0 \\ 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \\ 40.8 \pm 7.2 \\ 0.17 \pm 0.04 \\ 3.47 \pm 0.54 \\ 4.2 \pm 1.2 \end{array}$	Post-Fit

Ismet Siral, University Of Oregon

Phys. Lett. B 793 (2019) 469

Observation of EWK WZ Production

Systematic Uncertainties

Source	Uncertainty [%]
WZjj-EW theory modelling	4.8
WZjj-QCD theory modelling	5.2
WZjj-EW and $WZjj$ -QCD interference	1.9
Jets	6.6
Pile-up	2.2
Electrons	1.4
Muons	0.4
b-tagging	0.1
MC statistics	1.9
Misid. lepton background	0.9
Other backgrounds	0.8
Luminosity	2.1
Total Systematics	10.7

Ismet Siral, University Of Oregon

Phys. Lett. B 793 (2019) 469

Observation of EWK WZ Production

Backgrounds

Observation of EWK WZ Production Fit Results

Ismet Siral, University Of Oregon

<u>Phys. Lett. B 793 (2019) 469</u>

Electrons

Red. Background

Irred. Background

Muons

Pileup

Jets

1.5

1.8

8.0

6.1

10.6

1.4

1.4

1.9

5.5

0.5

3.0

0.8

68

3.0

3.5

3.4

5.5 11_9

1.4

2.3

2.3

6.5

1.9

4.6

0.8

2.0

2.2

6.0

0.5

4.3

0.9

Evidence of VBS Production of Zγ Backup Slides

Evidence of VBS Production of Zy

Yields and Systematic Uncertainties

Source	Uncertainty [%]
Statistical	+19 -18
$Z\gamma jj$ –EW theory modelling	+10
$Z\gamma jj$ –QCD theory modelling	± 6
$t\bar{t} + \gamma$ theory modelling	±2
$Z\gamma jj$ –EW and $Z\gamma jj$ –QCD interference	+3 -2
Jets	±8
Pile-up	± 5
Electrons	±1
Muons	+3
Photons	±1
Electrons/photons energy scale	±1
<i>b</i> -tagging	±2
MC statistical uncertainties	± 8
Other backgrounds normalisation (including Z+jets)	+9 -8
Luminosity	±2
Total uncertainty	±26

	SR		<i>b</i> -CR	
Data	1222		388	
Total expected	1222	± 35	389	±19
$Z\gamma jj$ –EW (signal)	104	±26	5	± 1
Zγjj–QCD	864	± 60	82	± 9
Z+jets	200	± 40	19	± 4
$t\bar{t} + \gamma$	48	± 10	280	±21
Other backgrounds	7	± 1	4	± 1

Evidence of VBS Production of Zy

Event Selection & BDT Variables

	$\ell^+\ell^-\gamma i j$ preselection			
Lepton	$\frac{p_T^\ell > 20 \text{ GeV}}{p_T^\ell > 20 \text{ GeV}}$			Variable used in the BDT
	$ \eta_{\ell} < 2.47(2.5)$ for $e(\mu)$			
	remove <i>e</i> if $\Delta R(e, \mu) < 0.1$		0+0	m_{ii}
	$N_\ell = 2$		<i>t t yjj</i> preselection	55
Boson	$m_{\ell^+\ell^-} > 40 \text{ GeV}$	Lepton	$p_T^{\ell} > 20 \text{ GeV}$	$\Delta \eta_{jj}$
	$m_{\ell^+\ell^-} + m_{\ell^+\ell^-\gamma} > 182 \text{ GeV}$		$ \eta_{\ell} < 2.5$	$\mathcal{L}(\mathcal{P}\mathcal{P}_{-})$
Photon	$E_T^{\gamma} > 15 \text{ GeV}$		femove $e \Pi \Delta R(e, \mu) < 0.1$	$\zeta(\ell\ell\gamma)$
	$ \eta_{\gamma} < 2.37 \text{ (excl. } 1.37 < \eta_{\gamma} < 1.52)$ remove γ if $\Delta R(\ell, \gamma) < 0.4$ $N_{\gamma} \ge 1$	Boson	$m_{\ell^+\ell^-} > 40 \text{ GeV}$ $m_{\ell^+\ell^-} + m_{\ell^+\ell^-\gamma} > 182 \text{ GeV}$ $F^{\gamma} > 15 \text{ GeV}$	$m_{\ell\ell\gamma}$ $p^{\ell\ell\gamma}$
<i>b</i> -jet	$p_T^{\text{jet}} > 25 \text{ GeV}, \eta_{\text{iet}} < 2.5$	FIIOtOII	$ n_{\rm c} < 2.37$	P_T
Jet	$p_T^{\text{jet}} > 50 \text{ GeV}$, $ \eta_{\text{jet}} < 4.5$ $N_{\text{Jets}} \ge 2$		remove γ if $\Delta R(\ell, \gamma) < 0.4$ $N_{\gamma} \ge 1$	$m_{\ell\ell}$
	remove jets if $\Delta R(\ell, \text{jet}) < 0.4 \text{ OR } \Delta R(\gamma, \text{jet}) < 0.4$	Jet	$p_T^{\text{jet}} > 50 \text{ GeV} , \eta_{\text{jet}} < 4.5$	$p_T^{\iota\iota}$
	$ \Delta \eta_{jj} > 1.0$		$N_{ m Jets} \ge 2$	lead lep
	$m_{jj} > 150 \text{ GeV}$		remove jets if $\Delta R(\ell, \text{jet}) < 0.3 \text{ OR } \Delta R(\gamma, \text{jet}) < 0.4$	p_T
<i>b</i> -CR	$\ell^+\ell^-\gamma jj$ preselection		$ \Delta \eta_{jj} > 1.0$	$n_{\pi}^{\text{lead jet}}$
	$\zeta(\ell\ell\gamma) < 5$	Signal Region	$\frac{m_{jj} > 150 \text{ GeV}}{\ell^+ \ell^- \gamma i i \text{ preselection}}$	PT
	Nb-jet>0	Signal Region	$\zeta(\ell\ell\gamma) < 5$	$\eta^{ ext{lead jet}}$
Signal Region	$\ell^+\ell^-\gamma jj$ preselection		5(007) 10	•
	$\zeta(\ell\ell\gamma) < 5$			$min\Delta R(\gamma, j)$
	Nb-jet=0			$\Lambda + (\rho \rho_{\alpha}, ii)$
			Particle Level	$\Delta \varphi(\iota \iota \gamma, JJ)$
	Reco Level			$\Delta R(\ell\ell\gamma, jj)$

Reco Level

Observation of VBS Production of ZZ Backup Slides
Observation of VBS Production of ZZ BDT Discriminants

BDT Output

BDT Output

73

BDT Output

Observation of VBS Production of ZZ

Event Selection and Yields

	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$	
Electrons	$\begin{array}{l} p_{\rm T} > 7 \ {\rm GeV}, \ \eta < 2.47 \\ d_0/\sigma_{d_0} < 5 \ {\rm and} \ z_0 \times \sin \theta < 0.5 \ {\rm mm} \end{array}$		
Muons	$p_{ m T}>7~{ m GeV}, \eta <2.7$ $ d_0/\sigma_{d_0} <3~{ m and}~ z_0 imes\sin heta$	$p_{\rm T} > 7 \ {\rm GeV}, \eta < 2.5 \label{eq:p_T} \theta < 0.5 \ {\rm mm}$	
Jets	$p_{\rm T} > 30 \ (40) \ {\rm GeV} \ {\rm for} \ \eta < 2.4 \ (2.4 < \eta < 4.5)$	$p_{\rm T} > 60~(40)~{\rm GeV}$ for the leading (sub-leading) jet	
	$p_{\rm T} > 20, 20, 10$ GeV for the leading, sub-leading and third leptons Two OSSF lepton pairs with smallest $ m_{\ell^+\ell^-} - m_Z + m_{\ell^{'+}\ell^{'-}} - m_Z $	$p_{\rm T} > 30~(20)~{\rm GeV}$ for the leading (sub-leading) lepton One OSSF lepton pair and no third leptons	
ZZ selection	$m_{\ell^+\ell^-} > 10 \text{ GeV}$ for lepton pairs	$80 < m_{\ell^+ \ell^-} < 100 \ {\rm GeV}$	
	$\Delta R(\ell,\ell')>0.2$	No b-tagged jets	
	$66 < m_{\ell^+ \ell^-} < 116 ~{\rm GeV}$	$E_{\rm T}^{\rm miss}$ significance > 12	
Dijot soloction	Two most energetic jets with	$y_{j_1} \times y_{j_2} < 0$	
Dijet selection	$m_{jj} > 300 \text{ GeV} \text{ and } \Delta y(jj) > 2$	$m_{jj} > 400 \text{ GeV and } \Delta y(jj) > 2$	

Process	$\ell\ell\ell\ell jj$	$\ell\ell u u jj$
${ m EW}~ZZjj$	$20.6\pm~2.5$	12.3 ± 0.7
$\operatorname{QCD} ZZjj$	77.4 ± 25.0	17.2 ± 3.5
${ m QCD}~ggZZjj$	13.1 ± 4.4	3.5 ± 1.1
Non-resonant- $\ell\ell$	-	21.4 ± 4.8
WZ	-	22.8 ± 1.1
Others	3.2 ± 2.1	1.2 ± 0.9
Total	114.3 ± 25.6	78.4 ± 6.2
Data	127	82

Evidence for Tri-Boson Production Backup Slides

Evidence for Tri-Boson Production All Signal Regions

Uncertainty source	$\Delta \mu_V$	VVV
Data-driven	+0.14	-0.14
Theory	+0.15	-0.13
Instrumental	+0.12	-0.09
MC stat. uncertainty	+0.06	-0.04
Generators	+0.04	-0.03
Total systematic uncertainty	+0.30	-0.27

	4ℓ-DF	4ℓ-SF-Z	4ℓ-SF-noZ	3ℓ-1j	3ℓ-2j	3ℓ-3j	$t\bar{t}Z$ CR
WVZ	9.6 ± 3.5	5.0 ± 1.8	10 ± 4	62 ± 23	85 ± 30	84 ± 30	_
WZ	1.11 ± 0.13	_	1.08 ± 0.14	2580 ± 80	1830 ± 60	1110 ± 50	5.7 ± 0.4
ZZ	6.7 ± 0.4	933 ± 28	310 ± 10	344 ± 12	182 ± 13	98 ± 12	0.58 ± 0.06
$t\bar{t}Z$	5.1 ± 0.5	0.55 ± 0.08	4.5 ± 0.5	7.6 ± 1.1	22.6 ± 2.5	82 ± 8	122 ± 9
tWZ	1.9 ± 0.4	0.23 ± 0.10	1.6 ± 0.4	4.2 ± 0.9	11.2 ± 2.2	20 ± 4	10.3 ± 0.8
Non-prompt	—	_	0.18 ± 0.12	130 ± 50	77 ± 28	59 ± 24	0.47 ± 0.18
γ conv.	—	_	—	42 ± 8	32 ± 7	9.6 ± 3.4	0.4 ± 0.6
Other	0.4 ± 0.4	1.8 ± 1.1	1.0 ± 0.7	200 ± 15	182 ± 16	120 ± 10	24.4 ± 2.5
Total	24.8 ± 3.5	941 ± 27	329 ± 10	3370 ± 70	2430 ± 40	1580 ± 40	160 ± 10
Data	28	912	360	3351	2438	1572	170

Phys. Lett. B 798 (2019) 134913

Evidence for Tri-Boson Production WVZ BDT Discriminants

Variable	3ℓ-1j	3ℓ-2ј	3 <i>ℓ</i> -3j	4ℓ DF	4ℓ SF on-shell	4ℓ SF off-shell
$p_{\mathrm{T}}(\ell_1)$	×	×				
$p_{\rm T}(\ell_2)$	×	×	×			
$p_{\mathrm{T}}(\ell_3)$	×	×	×			
Sum of $p_{\rm T}(\ell)$	×	×	×			
$m_{\ell_1\ell_2}$	×	×				
$m_{\ell_1\ell_3}$	×	×				
$m_{\ell_2\ell_3}$	×	×				
$m_{\ell\ell}$ of best Z					×	×
$m_{\ell\ell}$ of other leptons				×	×	×
$m_{3\ell}$	×	×	×			
$m_{4\ell}$				×	×	×
Sum of lepton charges	×	×	×			
$p_{\mathrm{T}}(j_1)$	×	×				
$p_{\mathrm{T}}(j_2)$		×	×			
Sum of $p_{\rm T}(j)$			×			
Number of jets			×	×	×	×
m_{j_1,j_2}		×				
$m_{\mathrm{T}}(W_{\ell})$		×				
m_{jj} of best W			×			
Smallest m_{jj}			×			
$E_{\rm T}^{\rm miss}$		×	×	×	×	×
H _T	×	×			×	×
Leptonic $H_{\rm T}$				×		
Hadronic $H_{\rm T}$				×		
Invariant mass of all						
leptons, jets and $E_{\rm T}^{\rm miss}$	×		×			
Invariant mass of the						
best Z leptons and j_1	X					

Ismet Siral, University Of Oregon

Phys. Lett. B 798 (2019) 134913

Lepton defintion	Quality	$\substack{ \text{Minimum} \\ p_{\mathrm{T}} }$	Isolation	$\begin{array}{c} \text{Maximum} \\ d_0 /{\sigma_d}_0 \end{array}$	$\begin{array}{l} \operatorname{Maximum} \\ z_0 \sin \theta \end{array}$	n.p.l. BDT	ch.mis. BDT
Nominal e Nominal μ WWW Nominal μ WVZ	Tight Medium Loose	$15{ m GeV}$	Fix (Loose) Gradient FixCutLoose	5 3 3	$0.5\mathrm{mm}$	yes	yes
Loose e Loose μ	Loose	$15{ m GeV}$	no	5 3	$0.5\mathrm{mm}$	no	no _
Veto e Veto μ	$ \begin{array}{ c c } Loose \\ Loose and \eta < 2.7 \end{array} $	$7{ m GeV}$	no	no	no	no	no –
Fake e Fake μ	Medium not Tight Not nominal WWW	$15{ m GeV}$	no	5 10	$0.5\mathrm{mm}$	no	no _
Photon-like e	Defined as for nominal, but no hit in first pixel layer					no	no

Event Selection Criteria WWW

	$WWW \to \ell \nu \ell \nu q q$	$ WWW \to \ell \nu \ell \nu \ell \nu$		
Lepton	Two leptons with $p_{\rm T}$ >	Three leptons with $p_{\rm T}$ >		
	27(20) GeV and one same-sign	27(20,20) GeV and no same-		
	lepton pair	flavour opposite-sign lepton pairs		
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \mathrm{GeV}$	—		
Jets	At least two jets with $p_{\rm T}$ >	—		
	$30(20) GeV$ and $ \eta < 2.5$			
m_{jj}	$m_{jj} < 300 \mathrm{GeV}$	—		
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$	—		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 55 {\rm GeV} \ (\text{only for } ee)$	—		
Z boson veto	$m_{ee} < 80 \text{GeV} \text{ or } m_{ee} > 100 \text{GeV} \text{ (only for } ee \text{ and } \mu ee)$			
Lepton veto	No additional lepton with $p_{\rm T} > 7 {\rm GeV}$ and $ \eta < 2.5$			
<i>b</i> -jet veto	No <i>b</i> -jets with $p_{\rm T} > 2$	$25 \mathrm{GeV}$ and $ \eta < 2.5$		

Event Selection Criteria WVZ

	$ WVZ \rightarrow \ell \nu q q \ell \ell$	$ WVZ \to \ell \nu \ell \nu \ell \ell / qq \ell \ell \ell \ell$	
Z boson	At least one OS lepton pair with $ m_{\ell\ell} - 91.2 \text{GeV} < 10 \text{GeV}$		
<i>b</i> -jet veto	No <i>b</i> -jets with $p_{\rm T} > 25 {\rm GeV}$ and $ \eta < 2.5$		
Leptons	One additional nominal lepton One additional OS lepton path third and fourth lepton nominal		
H_{T}	$H_{\rm T} > 200 {\rm GeV}$		

Event Selection Criteria For Control Regions

WZ control region	$\begin{array}{ l l l l l l l l l l l l l l l l l l l$
W sideband validation region	$\begin{vmatrix} \text{Same as the } WWW \rightarrow \ell \nu \ell \nu q q \text{ SR, with} \\ m_{jj} < 50 \text{ GeV or } m_{jj} > 120 \text{ GeV} \end{vmatrix}$
$t\bar{t}Z$ control region	Same as the 3ℓ - $3j$ SR region, except: no requirement on $H_{\rm T}$, at least four jets, at least two <i>b</i> -tagged jets.
WZ+jets and Z +jets validation regions	$ \left \begin{array}{c} \text{Same as the 3ℓ-1j SR region, except:} \\ \text{no requirement on H_T;} \\ \text{third-highest-p_T lepton has 10 GeV $< p_T $< 15 GeV;} \\ m_{\ell\ell\ell} $< 150 \text{ GeV}. \end{array} \right $

Backup Slides

Cuts Photons Electrons Muons Electrons/Muons Photons Kinematics: $E_{\rm T} > 30 {\rm ~GeV}$ $p_{\rm T} > 30, 25 {\rm ~GeV}$ $p_{\rm T} > 30, 25 {\rm ~GeV}$ $|\eta| < 2.37$ $|\eta| < 2.5$ $E_{\rm T}^{\gamma} > 30 {\rm ~GeV}$ $p_{\rm T}^{\ell} > 30, 25 \,\,{\rm GeV}$ $|\eta| < 2.47$ excl. $1.37 < |\eta| < 1.52$ excl. $1.37 < |\eta| < 1.52$ $|\eta^{\ell}| < 2.47$ $|\eta^{\gamma}| < 2.37$ Identification: Medium [56] Tight [55] Medium [55] FixedCutLoose [55] FCLoose_FixedRad [56] $E_{\rm T}^{\rm cone0.2} / E_{\rm T}^{\gamma} < 0.07$ Isolation: FCLoose [55] dressed leptons $\Delta R(\ell, \gamma) > 0.4$ $\Delta R(\mu, e) > 0.2$ $\Delta R(\ell, \gamma) > 0.4$ Event selection: $m(\ell\ell) > 40 \, GeV.$ $m(\ell\ell) + m(\ell\ell\gamma) > 182 \, GeV$ Event selection 140 Events m(µµ) [GeV] $m(\ell\ell) > 40 \, GeV$ 80 ATLAS 130 $m(\ell\ell) + m(\ell\ell\gamma) > 182 \, GeV$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ 70 120 μμγ 60 110 100 50 90 40 80 30 70 20 60 10 50 0 100 110 120 130 140 150 160 170 80 90 7() m(μμγ) [GeV]

Ismet Siral, University Of Oregon

<u>arXiv:1911.04813</u>

Uncertainties

Source	Uncerta	ainty [%]	Correlation
	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$	
Trigger efficiency	—	0.2	no
Photon identification efficiency	1	0	yes
Photon isolation efficiency	0).9	yes
Electron identification efficiency	1.4	—	no
Electron reconstruction efficiency	0.3	—	no
Electron–photon energy scale	0.9	0.6	partial
Muon isolation efficiency	—	0.4	no
Muon identification efficiency	_	0.7	no
Z + jets background	1	3	yes
Pile-up background	C).6	yes
Other backgrounds	0.8	0.7	partial
Monte Carlo event statistics	0.4	0.4	no
Integrated luminosity	1	7	yes
Systematic uncertainty	3.2	2.9	
Statistical uncertainty	0.6	0.5	
Total uncertainty	3.2	3.0	

Fiducial Distributions

Yields and Cross-Sections

	$e^+e^-\gamma$	$\mu^+\mu^-\gamma$
N _{obs}	41343	54413
N_{Z+jets}	4130 ± 440	5470 ± 580
(includes $N_{\rm PU,iets}$	870 ± 170	$1140\pm230)$
$N_{\mathrm{PU},\gamma}$	1030 ± 210	1360 ± 270
$N_{t\bar{t}\gamma}$	1650 ± 250	1980 ± 300
N_{WZ}	$254\pm~76$	199 ± 60
N_{ZZ}	64 ± 19	102 ± 31
$N_{WW\gamma}$	$92\pm\ 28$	$112\pm~34$
$N_{\tau\tau\gamma}$	46 ± 15	39 ± 12
$N_{\rm obs} - N_{\rm bkg}$	34080 ± 590	45150 ± 750

 $C_{e^{\pm}e^{\mp}\gamma} = 0.426 \pm 0.007(\text{uncor}) \pm 0.008(\text{corr})$ $C_{\mu^{\pm}\mu^{\mp}\gamma} = 0.607 \pm 0.005(\text{uncor}) \pm 0.009(\text{corr})$

			Cross-section [fb]
$e^+e^-\gamma$	530.4	\pm 9.0 (uncorr)	$\pm 11.7 \text{ (corr)} \pm 9.0 \text{ (lumi)}$
$\mu^+\mu^-\gamma$	535.0	\pm 6.1 (uncorr)	\pm 11.5 (corr) \pm 9.1 (lumi)
$\ell^+\ell^-\gamma$	533.7	\pm 5.1 (uncorr)	$\pm 11.6 \text{ (corr)} \pm 9.1 \text{ (lumi)}$
Sherpa LO	438.9	\pm 0.6 (stat)	
Sherpa NLO	514.2	\pm 5.7 (stat)	
MadGraph NLO	503.4	\pm 1.8 (stat)	
MATRIX NLO	444.3	\pm 0.1 (stat)	$\pm 4.3 (C_{\text{theory}}) \pm 8.8 (\text{PDF}) \stackrel{+16.8}{_{-18.9}} (\text{scale})$
MATRIX NNLO	518.7	\pm 2.7 (stat)	$\pm 5.0 \ (C_{\text{theory}}) \pm 10.8 \ (\text{PDF}) \ ^{+16.4}_{-14.9} \ (\text{scale})$
MATRIX NNLO \times NLO EW	510.1	\pm 2.7 (stat)	$\pm 5.0 \ (C_{\text{theory}}) \pm 10.8 \ (\text{PDF}) \ ^{+16.4}_{-14.9} \ (\text{scale})$
MATRIX NNLO $+$ NLO EW	515.3	\pm 2.7 (stat)	$\pm 5.0 \ (C_{\text{theory}}) \pm 10.8 \ (\text{PDF}) \ ^{+16.4}_{-14.9} \ (\text{scale})$

Evidence for Tri-Boson Production Backup Slides

Evidence for Tri-Boson Production All Signal Regions

Uncertainty source	$\Delta \mu_{WVV}$		
Data-driven	+0.14	-0.14	
Theory	+0.15	-0.13	
Instrumental	+0.12	-0.09	
MC stat. uncertainty	+0.06	-0.04	
Generators	+0.04	-0.03	
Total systematic uncertainty	+0.30	-0.27	

	4ℓ-DF	4ℓ-SF-Z	4ℓ-SF-noZ	3ℓ-1j	3ℓ-2j	3ℓ-3j	$t\bar{t}Z$ CR
WVZ	9.6 ± 3.5	5.0 ± 1.8	10 ± 4	62 ± 23	85 ± 30	84 ± 30	_
WZ	1.11 ± 0.13	_	1.08 ± 0.14	2580 ± 80	1830 ± 60	1110 ± 50	5.7 ± 0.4
ZZ	6.7 ± 0.4	933 ± 28	310 ± 10	344 ± 12	182 ± 13	98 ± 12	0.58 ± 0.06
$t\bar{t}Z$	5.1 ± 0.5	0.55 ± 0.08	4.5 ± 0.5	7.6 ± 1.1	22.6 ± 2.5	82 ± 8	122 ± 9
tWZ	1.9 ± 0.4	0.23 ± 0.10	1.6 ± 0.4	4.2 ± 0.9	11.2 ± 2.2	20 ± 4	10.3 ± 0.8
Non-prompt	—	—	0.18 ± 0.12	130 ± 50	77 ± 28	59 ± 24	0.47 ± 0.18
γ conv.	—	—	—	42 ± 8	32 ± 7	9.6 ± 3.4	0.4 ± 0.6
Other	0.4 ± 0.4	1.8 ± 1.1	1.0 ± 0.7	200 ± 15	182 ± 16	120 ± 10	24.4 ± 2.5
Total	24.8 ± 3.5	941 ± 27	329 ± 10	3370 ± 70	2430 ± 40	1580 ± 40	160 ± 10
Data	28	912	360	3351	2438	1572	170

Phys. Lett. B 798 (2019) 134913

Evidence for Tri-Boson Production WVZ BDT Discriminants

Variable	3ℓ-1j	3ℓ-2ј	3 <i>l</i> -3j	4ℓ DF	4ℓ SF on-shell	4ℓ SF off-shell
$p_{\mathrm{T}}(\ell_1)$	×	×				
$p_{\mathrm{T}}(\ell_2)$	×	×	×			
$p_{\mathrm{T}}(\ell_3)$	×	×	×			
Sum of $p_{\rm T}(\ell)$	×	×	×			
$m_{\ell_1\ell_2}$	×	×				
$m_{\ell_1\ell_3}$	×	×				
$m_{\ell_2\ell_3}$	×	×				
$m_{\ell\ell}$ of best Z					×	×
$m_{\ell\ell}$ of other leptons				×	×	×
$m_{3\ell}$	×	×	×			
$m_{4\ell}$				×	×	×
Sum of lepton charges	×	×	×			
$p_{\mathrm{T}}(j_1)$	×	×				
$p_{\mathrm{T}}(j_2)$		×	×			
Sum of $p_{\rm T}(j)$			×			
Number of jets			×	×	×	×
m_{j_1,j_2}		×				
$m_{\mathrm{T}}(W_{\ell})$		×				
m_{jj} of best W			×			
Smallest m_{jj}			×			
$E_{\rm T}^{\rm miss}$		×	×	×	×	×
H _T	×	×			×	×
Leptonic $H_{\rm T}$				×		
Hadronic $H_{\rm T}$				×		
Invariant mass of all						
leptons, jets and $E_{\rm T}^{\rm miss}$	×		×			
Invariant mass of the						
best Z leptons and i_1	×					

Ismet Siral, University Of Oregon

Phys. Lett. B 798 (2019) 134913

Lepton defintion	Quality	$\substack{ \text{Minimum} \\ p_{\mathrm{T}} }$	Isolation	$\begin{array}{c} \text{Maximum} \\ d_0 /\sigma_{d_0} \end{array}$	$\begin{array}{l} \operatorname{Maximum} \\ z_0 \sin \theta \end{array}$	n.p.l. BDT	ch.mis. BDT
Nominal e Nominal μ WWW Nominal μ WVZ	Tight Medium Loose	$15{ m GeV}$	Fix (Loose) Gradient FixCutLoose	5 3 3	$0.5\mathrm{mm}$	yes	yes
Loose e Loose μ	Loose	$15{ m GeV}$	no	5 3	$0.5\mathrm{mm}$	no	no —
Veto e Veto μ	$\begin{vmatrix} & \text{Loose} \\ & \text{Loose and } \eta < 2.7 \end{vmatrix}$	$7{ m GeV}$	no	no	no	no	no —
Fake e Fake μ	Medium not Tight Not nominal WWW	$15{ m GeV}$	no	$5\\10$	$0.5\mathrm{mm}$	no	no —
Photon-like e	Defined as for nominal, but no hit in first pixel layer			no	no		

Event Selection Criteria WWW

	$WWW \to \ell \nu \ell \nu q q$	$ WWW \rightarrow \ell \nu \ell \nu \ell \nu$	
Lepton	Two leptons with $p_{\rm T}$ >	Three leptons with $p_{\rm T}$ >	
	27(20) GeV and one same-sign	27(20,20) GeV and no same-	
	lepton pair	flavour opposite-sign lepton pairs	
$m_{\ell\ell}$	$40 < m_{\ell\ell} < 400 \mathrm{GeV}$	—	
Jets	At least two jets with $p_{\rm T}$ >	—	
	$30(20) GeV \text{ and } \eta < 2.5$		
m_{jj}	$m_{jj} < 300 \mathrm{GeV}$	—	
$\Delta \eta_{jj}$	$ \Delta \eta_{jj} < 1.5$	—	
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 55 {\rm GeV} \ (\text{only for } ee)$	—	
Z boson veto	$m_{ee} < 80 \text{GeV} \text{ or } m_{ee} > 100 \text{GeV} \text{ (only for } ee \text{ and } \mu ee)$		
Lepton veto	No additional lepton with $p_{\rm T} > 7 {\rm GeV}$ and $ \eta < 2.5$		
<i>b</i> -jet veto	No <i>b</i> -jets with $p_{\rm T} > 25 {\rm GeV}$ and $ \eta < 2.5$		

Event Selection Criteria WVZ

$ WVZ \to \ell \nu q q \ell \ell$		$ WVZ \to \ell \nu \ell \nu \ell \ell / qq \ell \ell \ell \ell$	
Z boson	At least one OS lepton pair with $ m_{\ell\ell} - 91.2 \text{GeV} < 10 \text{GeV}$		
Low mass veto	$m_{\ell\ell} > 12 \text{GeV}$ for any OS lepton pair		
<i>b</i> -jet veto	No <i>b</i> -jets with $p_{\rm T} > 25 {\rm GeV}$ and $ \eta < 2.5$		
Leptons	One additional nominal lepton	One additional OS lepton pair;	
		third and fourth lepton nominal	
H_{T}	$ $ $H_{\rm T} > 200 {\rm GeV}$		

Event Selection Criteria For Control Regions

WZ control region	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
W sideband validation region	$\begin{vmatrix} \text{Same as the } WWW \rightarrow \ell \nu \ell \nu q q \text{ SR, with} \\ m_{jj} < 50 \text{ GeV or } m_{jj} > 120 \text{ GeV} \end{vmatrix}$
$t\bar{t}Z$ control region	Same as the 3ℓ - $3j$ SR region, except: no requirement on $H_{\rm T}$, at least four jets, at least two <i>b</i> -tagged jets.
WZ+jets and Z +jets validation regions	$ \left \begin{array}{c} \text{Same as the 3ℓ-1j SR region, except:} \\ \text{no requirement on H_T;} \\ \text{third-highest-p_T lepton has 10 GeV $< p_T $< 15 GeV;} \\ m_{\ell\ell\ell} $< 150 \text{ GeV}. \end{array} \right $