Flavour Anomalies

Cracow Epiphany Conference, 8th January 2020 Mitesh Patel (Imperial College London)

on behalf of LHCb, with material from ATLAS, CMS

Imperial College London

Introduction

- FCNC transitions, such as b → s(d)l⁺l⁻ decays, are excellent candidates for indirect NP searches
- Strongly suppressed in the SM as
 - arise only at the loop level
 - quark-mixing is hierarchical (off-diagonal CKM elements ≪ 1)
 - GIM mechanism
 - only the left-handed chirality participates in flavour-changing interactions

 But these conditions do not necessarily apply to physics beyond the SM!

Choosing observables

Observe hadronic decay, not the quark-level transition
 ⇒ Need to compute hadronic matrix elements (form-factors and decay constants)

• b
$$\rightarrow$$
 sµµ = \Rightarrow B⁺ \rightarrow K⁺µ⁺µ⁻, B⁰ \rightarrow K^{*0}µ⁺µ⁻, B_s \rightarrow ϕ µ⁺µ⁻...

→ Non-perturbative QCD, i.e. difficult to compute

(Lattice QCD, QCD factorisation, Light-cone sum rules...)

 Hadronic uncertainties cancel in certain observables, making them more sensitive to New Physics

Theoretical framework

 Interactions described in terms of an effective Hamiltonian that describes the full theory at lower energies (µ)

$$\mathcal{H}_{\text{eff}} \sim \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

 $C_i(\mu) \rightarrow$ Wilson coefficients (perturbative, short-distance physics, sensitive to $E > \mu$)

 $O_i \rightarrow Local operators$ (non-perturbative, long-distance physics, sensitive to $E < \mu$)

→ Contributions from New Physics can modify the measured values of WC's and/or introduce new operators

Outline

- Status of the anomalous flavour measurements
- Global fits and model building
- Future prospects

Outline

- Status of the anomalous flavour measurements
- Global fits and model building
- Future prospects

Branching fraction measurements

 Branching fractions for several b→sµµ processes consistently below the SM prediction at low q² = [m(l+l-)]²

SM predictions suffer from large uncertainties

BF – theory progress

- Width of the K* difficult to treat, calculations have thus far used the "narrow width" approximation
- First calculations of the effect of a wide K* appearing :

Angular observables

- Angular observables have reduced dependence on hadronic effects
- Best studied decay B⁰→K*⁰μμ
 - Dynamics can be described by three angles $(\theta_{\text{I}}, \theta_{\text{K}}, \phi)$ and di- μ invariant mass squared, q²
- Large number of observables where theoretical uncertainties cancel to some extent e.g.
 Forward-backward asymmetry A_{FB} of θ_I distn

B⁰→K*⁰μμ angular analysis

- LHCb performed first full angular analysis [JHEP 02 (2016) 104]
 - Extracted the full set of CP-avg'd angular terms and correlations

Determined full set of CP-asymmetries

 Vast majority of observables in agreement with SM predns, giving some confidence in theory control of form-factors

Angular observables

 Some angular observables have reduced dependence on hadronic effects and show some tension with SM

- BF and angular data consistent, best fit prefers shifted vector coupling C₉ (or C₉ and axial-vector C₁₀)
- ... could QCD effects mimic vector-like NP?

Could the SM predn be wrong?

Theorists have looked critically at their predictions – O_{1,2} operators have a component that could mimic a NP effect in C₉ through cc loop

Look for q² dependence of C₉ shift
 [EPJC 77 (2017) 377]

 Parameterisation to theory and auxiliary data to try and determine cc effect [EPJC 78 (2018) 451]

 No consensus in theory community about the size of such effects

cc loops – theory progress

- Calculation of hadronic matrix element for cc̄ effect
 - Factor 200 smaller than before...!

17/19

$\Delta C9(q^2)$		KMPW2010	GvDV2019
factorizable contr.		0.27	0.27
$B \to Kll$	$\tilde{\mathcal{A}}(q^2=1)$	$-0.09^{+0.06}_{-0.07}$	$(1.9^{+0.6}_{-0.6}) \cdot 10^{-4}$
	$\tilde{\mathcal{V}}_1(q^2=1)$	$0.6^{+0.7}_{-0.5}$	$(1.2^{+0.4}_{-0.4}) \cdot 10^{-3}$
$B\to K^*ll$	$\tilde{\mathcal{V}}_2(q^2=1)$	$0.6^{+0.7}_{-0.5}$	$(2.1^{+0.7}_{-0.7})\cdot 10^{-3}$
	$\tilde{\mathcal{V}}_3(q^2=1)$	$1.0_{-0.8}^{+1.6}$	$(3.0^{+1.0}_{-1.0}) \cdot 10^{-3}$
$B_s \to \phi l l$		-	???
			2

 $[q^2]$ is the dilepton mass square

results represented as a q^2 dependent correction to C9 we fully reproduce the results given in KMWP2010

matrix elements parametrized analogously to the form factors:

$$\langle K(k) | \tilde{O}_{\mu}(0,x) | B(q+k) \rangle = ((k \cdot q)q_{\mu} - q^{2}k_{\nu}) \tilde{\mathcal{A}}(q^{2}) + \dots$$

$$\langle K^*(k,\eta) | \tilde{O}_{\mu}(0,x) | B(q+k) \rangle = \epsilon_{\mu\alpha\beta\gamma} \eta^{*\alpha} q^{\beta} k^{\gamma} \, \tilde{\mathcal{V}}_{1}(q^2) + i \left(\left(m_B^2 - m_{K^*}^2 \right) \eta_{\mu}^* - (\eta^* \cdot k) (2k+q)_{\mu} \right) \tilde{\mathcal{V}}_{2}(q^2)$$

$$+ i (\eta^* \cdot q) \left(q_{\mu} - \frac{q^2}{m_B^2 - m_{K^*}^2} (2k+q)_{\mu} \right) \tilde{\mathcal{V}}_{3}(q^2) + \dots$$

Lepton flavour universality tests

- In the Standard Model, couplings of the gauge bosons to leptons are independent of lepton flavour
- Ratios of the form:

$$R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} \stackrel{\text{SM}}{\cong} 1$$

free from QCD uncertainties that affect other observables

- hadronic effects cancel, error is O(10⁻⁴) [JHEP 07 (2007) 040]
- QED corrections can be O(10⁻²) [EPJC 76 (2016) 440]
- [Theorists in unison:] Any sign of lepton flavour nonuniversality would be a direct sign for New Physics

LFU in charged-current decays

 An anomalous effect is seen in the ratio of tree-level branching fractions

 $R_D^{(*)} = B(B^0 \to D^{(*)} \tau \nu) / B(B^0 \to D^{(*)} \mu \nu)$

Not at all rare: B(B⁰→D*τν)
 ~1%, problem is the bkgrd

Measurements of R_D and R_D*'
 by BaBar, Belle and LHCb

Average shows a discrepancy with the SM of 3.1σ (HFLAV); recent claim that updated form factors make this 3.9σ [see here]

[arXiv:1904.08794, arXiv:1506.08614, arXiv:1711.02505, arXiv:1708.08856, arXiv:1607.07923, arXiv:1205.5442, arXiv:1303.0571, arXiv:1612.00529, arXiv:1709.00129]15

LFU in neutral-current decays

Equally intriguing picture in b→sll neutral-current decays:

- Both R_K and R_{K*} results below the SM expectation, although significance low
- Tensions can be explained with anomalous b→sµµ measurements in a coherent NP picture

Outline

- Status of the anomalous flavour measurements
- Global fits and model building
- Future prospects

Global fit including LFU obs.

- Best fit point in significant tension with the SM
- Muonic NP: C₉=-C₁₀ preferred?
- Adding LFU NP: Slight preference for universal shift in C₉

[M. Alguero et al., arXiv:1903.09578, A. K. Alok et al., arXiv:1903.09617, M. Ciuchini et al., arXiv:1903.09632, Guido D'Amico et al., arXiv:1704.05438]

Global fit with just 'clean' obs.

 Using just theoretically clean observables, R_K, R_{K*} and BF(B→μμ), can exclude SM at 3.6σ level

LFU in neutral-current decays

- Recent LHCb measurement of a further LFU ratio, R_{pK}
 - Submitted to JHEP [arXiv:1912.08139]

$$R_K = 0.846^{+0.060}_{-0.054} \text{ (stat)} ^{+0.014}_{-0.016} \text{ (syst)}$$

$$R_{pK}|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

Model Building

- Can accommodate anomalies with O(TeV)-O(10TeV) new physics
- e.g. Vector LeptoQuark (LQ), coupled mainly to third-generation fermions, able to give pattern anomalies
 - Potentially within reach of direct searches
 e.g. pp→ττ
 - Expect effects in e.g. B→τμ, B→Kττ etc.,
 which can be huge
 - While need LFUV, LFV is not mandatory [arXiv:1505.05164]
 - UV complete models give rise to additional¹⁰⁻⁷ particles

(*) Subsequent LHCb $B \rightarrow \tau \mu$ result [arXiv:1905.06614]

Model Building

- Can accommodate anomalies with O(TeV)-O(10TeV) new physics
- e.g. Vector LeptoQuark (LQ), coupled mainly to third-generation fermions, able to give pattern anomalies
 - Potentially within reach of direct searches
 e.g. pp→ττ
 - Expect effects in e.g. $B \rightarrow \tau \mu$, $B \rightarrow K\tau \tau$ etc., which can be huge
 - While need LFUV, LFV is not mandatory [arXiv:1505.05164]
 - UV complete models give rise to additional particles

[arXiv:1505.05164]

Model Building

- Pattern of anomalies can be linked to hierarchical structure of quark and lepton mass matrices through dynamical breaking of flavour symmetry [JHEP 1810 (2018) 148]
- Can also connect to portal models of dark matter [arXiv:1503.06077, PRD 96 (2017) 075041]

[arXiv:1505.05164]

Outline

- Status of the anomalous flavour measurements
- Global fits and model building
- Future prospects

Future measurements

- BFs already limited by precision of theory predictions
- Expect substantial gains from updated angular analysis
 - In short term, expect factor ~2 increase in $B^0{\to}K^{*0}{\mu}{\mu}$ precision from analysis of 2016 LHCb data
 - Further factor ~2 improvement in precision from 2017,18 data
 - Will take time to do precise job but e.g. P₅' in electron modes looking SM-like would be compelling

Future measurements – CC

- For the charged-current decays a simultaneous measurement of R_D,R_D* is in progress at LHCb
 - IMO not obvious this will have the precision to change the picture definitively
 - Analysis of equivalent ratio in $\Lambda_b \rightarrow \Lambda_c l v$ decays, $R(\Lambda_c)$ is also well-advanced

[arXiv:1904.08794, arXiv:1506.08614, arXiv:1711.02505, arXiv:1708.08856, arXiv:1607.07923, arXiv:1205.5442, arXiv:1303.0571, arXiv:1612.00529, arXiv:1709.00129]26

Future measurements – NC

- R_K update with 2017, 2018 data will effectively double the existing dataset
 - Try to minimise changes to technique; enable smoother review
 - Nonetheless, expect result to receive intense internal scrutiny
 - NB present R_K result separated into different data-taking periods:

```
R_K^{7 \text{ and } 8 \text{ TeV}} = 0.717^{+0.083}_{-0.071}^{+0.017}_{-0.016},

R_K^{13 \text{ TeV}} = 0.928^{+0.089}_{-0.076}^{+0.020}_{-0.017},
```

- Compatibility (1.9σ) checked while result still blind
- In several years of study have found no feature that suggests any unaccounted for difference in performance between run1, 2
- Trend in remainder of run2 data will clearly be of interest
- Other decay modes R_K* for model discrimination; R_φ to check bkgrd control; D_s→φ(ee)π to check low q²; high q² analyses

Future measurements – NC

- With $C_9^{NP} = -C_{10}^{NP}$ would eventually expect to see an effect in $B(B_s^0 \to \mu^+ \mu^-)$ decays
- Also expect to see a different pattern in B⁰→K*⁰µ⁺µ[−]
 angular analysis

The future of direct searches

- A single rare decay measurement gives constraints on only the mass, coupling plane of any new physics
- In simple NP models, accumulation of constraints from multiple decay modes can break this degeneracy
- Could have implications for the case for a future accelerator

[PRD 97 (2018) 095035

Conclusions

- Intriguing anomalies seen in neutral-current B decays
 - Branching fractions
 - Angular observables

but debate about control of theory uncertainties

- Lepton universality tests can give theoretically clean input
 - Latest measurements yet to provide a definitive picture
- Good prospects for resolution with new measurements