Overview of Heavy Flavour results from the LHCb experiment

Manuel Schiller on behalf of the LHCb collaboration

University of Glasgow

January 8th, 2020

A B M A B M

LHCb physics

- huge b and c production x-sections at LHC
 - relatively light: both b and b
 in tight cone around either beam
- LHCb has largest samples of b and c decays
 - can probe SM and NP using precision measurements
 - (over-)constrain SM parameters (CKM matrix!)
 - new sources of CP violation
 - rare decays
 - gain better understanding of (effective models of) QCD

LHCb experiment

 originally designed to study CPV and rare b and c decays, nowadays GPD in forward region

- tracking efficiency > 96% (multibody final states!)
- excellent vertexing: decay time resolution ~ 45 fs
- very good momentum resolution: $dp/p \sim 0.5 1.0\%$
- software trigger (HLT) input rate: 1 MHz

LHCb physics

LHCb physics

- LHCb has largest samples of b and c decays
- steady stream of publications
 - Nov 15th, 2019: 500th publication
 - now: 507 papers (submitted)

here are the publications since July 2019:

- First observation of excited Ω⁻_b states, PAPER-2019-042, [arXiv:2001.00851], PRL, 03 Jan 2020
- Search for *CP* violation and observation of *P* violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays, PAPER-2019-028, [arXiv:1912.10741], PRL, 23 Dec 2019
- Test of lepton universality with $\Lambda_b^0 \rightarrow pK^- \ell^+ \ell^-$ decays, PAPER-2019-040, [arXiv:1912.08139], JHEP, 17 Dec 2019
- Measurement of CP violation in $B^0 \rightarrow D^{*\pm}D^{\mp}$ decays, PAPER-2019-036, [arXiv:1912.03723], JHEP, 08 Dec 2019
- Isospin amplitudes in $\Lambda_b^0 \rightarrow J/\psi \Lambda(\Sigma^0)$ and $\Xi_b^0 \rightarrow J/\psi \Xi^0(\Lambda)$ decays, PAPER-2019-039, [arXiv:1912.02110], PRL, 04 Dec 2019
- Precision measurement of the E⁺⁺_{CC} mass, PAPER-2019-037, [arXiv:1911.08594], JHEP, 19 Nov 2019
- Observation of the semileptonic decay B⁺ → ppµ⁺νµ, PAPER-2019-034, [arXiv:1911.08187], JHEP, 19 Nov 2019
- **Determination of quantum numbers for several excited charmed mesons observed in** $B^- \rightarrow D^{*+}\pi^-\pi^-$ decays, PAPER-2019-027, [arXiv:1911.05957], PRD, 14 Nov 2019
- Measurement of the $\eta_c(1S)$ production cross-section in pp collisions at \sqrt{s} =13 TeV, PAPER-2019-024, [arXiv:1911.03326], EPJC, 08 Nov 2019
- **U**pdated measurement of decay-time-dependent *CP* asymmetries in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays, PAPER-2019-032, [arXiv:1911.01114], PRD, 04 Nov 2019
- Measurement of the B_c⁻ meson production fraction and asymmetry in 7 and 13 TeV pp collisions, PAPER-2019-033, [arXiv:1910.13404], Phys. Rev. D100 (2019) 112006, 29 Oct 2019
- Measurement of Ξ_{cc}^{++} production in pp collisions at \sqrt{s} = 13 TeV, PAPER-2019-035, [arXiv:1910.11316], Chin. Phys. C, 24 Oct 2019
- Measurement of fs/fu variation with proton-proton collision energy and kinematics, PAPER-2019-020, [arXiv:1910.09934], PRL, 22 Oct 2019
- Search for A' → µ⁺µ[−] decays, PAPER-2019-031, [arXiv:1910.06926], PRL, 15 Oct 2019
- Search for the doubly charmed baryon E⁺_{cc}, PAPER-2019-029, [arXiv:1909.12273], Sci.China Phys.Mech.Astron. (2020) 63 221062, 26 Sep 2019
- Amplitude analysis of the B⁺ → π⁺π⁺π⁻ decay, PAPER-2019-017, [arXiv:1909.05212], PRD, 11 Sep 2019
- **Observation of several sources of** *CP* violation in $B^+ \rightarrow \pi^+\pi^+\pi^-$ decays, PAPER-2019-018, [arXiv:1909.05211], PRL, 11 Sep 2019
- Search for the lepton-flavour violating decays $B^+ \rightarrow K^+ \mu^\pm e^\pm$, PAPER-2019-022, [arXiv:1909.01010], Phys. Rev. Lett.123 (2019) 241802, 03 Sep 2019
- Measurement of ψ(2S) production cross-sections in proton-proton collisions at √s =7 and 13 TeV, PAPER-2018-049, [arXiv:1908.03099], EPJC, 08 Aug 2019
- **Observation of new resonances in the** $\Lambda_b^0 \pi^+ \pi^-$ system, PAPER-2019-025, [arXiv:1907.13598], Phys. Rev. Lett. 123 (2019) 152001, 31 Jul 2019
- Measurement of *CP* violation in the $B_3^0 \rightarrow \phi \phi$ decay and search for the $B^0 \rightarrow \phi \phi$ decay, PAPER-2019-019, [arXiv:1907.10003], JHEP, 23 Jul 2019
- Observation of the Λ⁰_b → χ_{c1}(3872)pK⁻ decay, PAPER-2019-023, [arXiv:1907.00954], 01 Jul 2019

- list on last page is clearly far too much to cover
- will therefore pick or point to a few highlights:
 - first, there are excellent talks by other LHCb collaborators:
 - Wednesday: Carla Marin Benito: Test of Lepton Universality with $\Lambda_b \rightarrow pK\ell\ell$ decays LHCb-PAPER-2019-040, [arXiv:1912.08139]
 - Thursday: Cesar Luiz Da Silva: Physics opportunities with a future soft particle tracker in LHCb
 - **Thursday:** Jozef Tomasz Borsuk: $b \rightarrow s\ell\ell$ transitions at LHCb
 - Thursday: Milosz Zdybal: Particle Correlations at LHCb
 - Thursday: Mateusz Jacek Goncerz: Exotic searches at LHCb
 - Thursday: Simone Meloni: Test of lepton flavour universality in $b \rightarrow c \ell v$ decays at the LHCb experiment

will cover some of the excellent work that was done in various areas

■ can only cover so much in half an hour — my apologies...

- Precision measurement of the E⁺⁺_{cc} mass, PAPER-2019-037, [arXiv:1911.08594], JHEP, 19 Nov 2019
- Measurement of Ξ_{cc}^{+c} production in pp collisions at \sqrt{s} = 13 TeV, PAPER-2019-035, [arXiv:1910.11316], Chin. Phys. C, 24 Oct 2019
- Measurement of the B_c⁻ meson production fraction and asymmetry in 7 and 13 TeV pp collisions, PAPER-2019-033, [arXiv:1910.13404], Phys. Rev. D100 (2019) 112006, 29 Oct 2019

イロン イワン イヨン イヨン

lanuary 8th. 2020

- First observation of excited Ω_b⁻ states, PAPER-2019-042, [arXiv:2001.00851], PRL, 03 Jan 2020
- Measurement of $|V_{cb}|$ with $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ decays, preliminary, to appear shortly

(some) highlights

(some) highlights

January 8th, 2020

< < >> < <</>

production

- 2016 data, 1.7 fb⁻¹
- $m_{\rm H_{2}^{\pm\pm}} = (3621.34 \pm 0.74) \, {\rm MeV}/c^2$ (stat. only it's a production measurement)
- measure production cross-section of Ξ_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$
 - in kinematic region $4 < p_T < 15$ GeV/ c^2 and $2.0 < \gamma < 4.5$
 - relative to the Λ_c^+ production cross-section:

$$\frac{r(\Xi_{cc}^{++})}{r(\Lambda_c^+)} = (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$$

★ ∃ > < ∃ >

 Ξ_{cc}^{++} mass

2016-2018 data, 5.6 fb⁻¹, published not one month apart

- precision measurement of mass of Ξ_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$ and $\Xi_c^+ \pi^+$: $m_{\Xi_{cc}^{++}} = (3621.55 \pm 0.23 \text{ (stat)} \pm 0.30 \text{ (syst)}) \text{ MeV}/c^2$
- world's most precise measurement of Ξ_{cc}^{++} mass

LHCb

B_c^- production fraction

First observation of excited Ω_{h}^{0} states

First observation of excited Ω_b^0 states

First observation of excited Ω_b^0 states

selection

• reconstruct $\Xi_c^+ \rightarrow pK^-\pi^+$ (arrows indicate cuts)

- data samples: 1 fb⁻¹ at \sqrt{s} = 7 TeV, 2 fb⁻¹ at 8 TeV and 6 fb⁻¹ at 13 TeV
- from displaced tracks with clear PID assignment forming good vertex
- veto main BG from mid-ID'ed $D^+_{(s)} \rightarrow K^+(K/\pi)^-\pi^+$, $D^{*+} \rightarrow (D^0 \rightarrow K^-\pi^+)\pi^+$, and

 $\phi \rightarrow K^+ K^-$ + random track

reconstruct $\Xi_b^0 \rightarrow \Xi_c^+ \pi^-$ (arrows indicate cuts)

■ use BDT to further suppress combinatorial BGs by factor 2.5 (90% efficiency)

■ 19.2 ± 0.2 k very clean Ξ_b^0 candidates

5900

LHCh

selection and fit

- **•** take Ξ_{b}^{0} and add prompt charged K
 - $\Xi_b^0 K$ vertex kinematically constraint to primary vertex
 - study $\delta M = M(\Xi_b^0 K) M(\Xi_b^0)$ distribution
 - right sign candidates ($\Xi^0_b K^-$) and wrong sign ones ($\Xi^0_b K^+$)
 - wrong sign candidates crucial to control background shape
 - optimize PID requirements on K^- using FOM $\epsilon_{MC}/(\sqrt{B} + 5/2)$ from WS for $520 < \delta M/\text{MeV} < 570$ (expected BG yield scaled to a 10 MeV window for narrow peaks)
 - double-gaussian resolution function σ_M ; in relevant δM range, $\sigma_M = 0.7 - 0.8 \,\text{MeV}$
 - fit peaks: Breit-Wigner with Blass-Weisskopf barrier factor, convolved with resolution function

results, systematics

results, systematics

M.S

width [MeV]	signal yield	local significance	global significance
$0.00\substack{+0.65\\-0.00}$	$14.6^{+6.2}_{-5.1}$	3.6	2.1
$0.00^{+0.42}_{-0.00}$	$17.5_{-5.4}^{+6.4}$	3.7	2.6
$0.47^{+0.64}_{-0.47}$	$47.2^{+11.0}_{-9.9}$	7.2	6.7
$1.4^{+1.0}_{-0.8}$	$56.8^{+13.9}_{-12.5}$	7.0	6.2
	$\begin{array}{c} \text{width} \\ [\text{MeV}] \\ \hline 0.00 \substack{+0.65 \\ -0.00} \\ 0.00 \substack{+0.42 \\ -0.42} \\ 0.47 \substack{+0.64 \\ -0.47} \\ 1.4 \substack{+1.0 \\ -0.8} \end{array}$	$\begin{array}{c c} \mbox{width} & \mbox{signal} \\ \hline [MeV] & \mbox{yield} \\ \hline 0.00^{+0.65}_{-0.00} & 14.6^{+6.2}_{-5.1} \\ 0.00^{+0.42}_{-0.00} & 17.5^{+6.4}_{-5.4} \\ 0.47^{+0.64}_{-0.47} & 47.2^{+11.0}_{-9.9} \\ 1.4^{+1.0}_{-0.8} & 56.8^{+13.9}_{-12.5} \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

[arXiv:2001.00851]

- local significance from $\mathscr{S}_{data} = \sqrt{2\log(\mathscr{L}_{max}/\mathscr{L}_0)}$ where \mathscr{L}_0 is LH with signal yield fixed to 0
- global significance (incl. "look-elsewhere" effect) from distribution of β_{pe} in pseudo-experiments (with yields fixed to 0)
- (non-negligible) sources of systematic uncertainty on δM :

	source	peak 1	peak 2	peak 3	peak 4		
		[MeV]	[MeV]	[MeV]	[MeV]		
	momentum scale		0.02	0.02	0.03		
energy loss		0.04	0.04	0.04	0.04		
momentum scale energy loss signal shape background total		0.02	0.02	0.02	0.02		
momentum scale energy loss signal shape background total		0.05	0.05	0.01	0.01		
	total	0.07	0.07	0.05	0.05		
				• • • • • • • • • • • • • • • • • • •	57 → 🔺 🚊 → 🗍 a	r¥iy:200 <u></u> 1.0085	jb] (~
chiller (Gla	sgow) Over	view Heavy Fla	vour LHCb	J	anuary 8th, 202	20 13/28	LHC

summary

	$\delta M \; [{\sf MeV}]$	mass [MeV]	width [MeV]
$\Omega_{b}(6316)^{-}$	$523.74 \pm 0.31 \pm 0.07$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.05$	<2.8 (4.2)
$\Omega_{b}(6330)^{-}$	$538.40 \pm 0.28 \pm 0.07$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.05$	<3.1 (4.7)
$\Omega_{b}(6340)^{-}$	$547.81 \pm 0.26 \pm 0.05$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.05$	<1.5 (1.8)
$\Omega_{b}(6350)^{-}$	$557.98 \pm 0.35 \pm 0.05$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.05$	<2.8 (3.2)
			$1.4^{+1.0}_{-0.8} \pm 0.1$

mass uncertainties are: stat., syst., syst. from m_{E⁰_b}
 widths at 90(95) % CL, and central value for heaviest peak

• two new excited Ω_b^- states observed, and hints of two more

Overview Heavy Flavour LHCb

 $|V_{cb}|$ from $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ introduction

 V_{cb} from $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

$|V_{cb}|$ from $B_s^0 \rightarrow D_s^{(*)} \mu^+ \nu_\mu$

Overview Heavy Flavour LHCb

15 / 28 January 8th, 2020

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● の Q ()

 $|V_{ch}|$ from $B_{S}^{0} \rightarrow D_{S}^{(*)-} \mu^{+} \nu_{\mu}$ introduction

V_{cb} introduction

- determine $|V_{cb}|$ from $b \rightarrow c$ transition
 - inclusively, i.e. *b*-hadron \rightarrow *c*-hadron + charged lepton
 - + no hard-to-calculate bound QCD states
 - difficult to ensure truely selection inclusive
 - inclusive average: $|V_{cb}| =$ $(42.19 \pm 0.78) \times 10^{-3}$ (HFLAV 2018)
 - exclusively, e.g. $B^0 \rightarrow D^- \mu^+ \nu_{\nu}$
 - + much easier to do experimentally
 - need form-factors (FF) to interpret result: quarks in strongly bound system
 - exclusive average: $|V_{cb}| = (39.25 \pm 0.56) \times 10^{-3}$
 - slight tension between averages!
 - CLN FF parametrisation used in excl. measurements cause of tension?
 - new measurements: try also e.g. BGL FF param. (more general, but truncation of series in BGL somewhat arbitrary), and compare
 - will show preliminary exclusive determination on next few pages...

$|V_{ch}|$ from semileptonic $b \rightarrow c$: (some) theory

vector case:

 $\frac{\mathsf{d}^4\Gamma(B\to D^*\mu\nu)}{\mathsf{d}w\,\mathsf{d}\cos\theta_\mu\,\mathsf{d}\cos\theta_D\,\mathsf{d}\chi} = \frac{3m_B^3m_{D^*}^2G_{\rm F}^2}{16(4\pi)^4}\eta_{EW}^2|\mathcal{O}(w,\theta_\mu,\theta_D,\chi)|^2$

- with recoil variable $w = v_B \cdot v_{D^*} = (m_B^2 + m_{D^*}^2 q^2)/(2m_B m_{D^*})$
- express amplitude in terms of w and helicity angles: $|\mathcal{A}(w, \theta_{\mu}, \theta_{D}, \chi)|^{2} = \sum_{i=1}^{6} \mathcal{H}_{i}(w) k_{i}(\theta_{\mu}, \theta_{D}, \chi)$
- terms $\mathcal{H}_i(w)$ depend on w, B and D^* masses, and form factors (FF) $h_{A_1}(w), R_1(w), R_2(w)$

X	1	÷	$\mathcal{H}_i(w)$	$k_i(\theta_\mu)$	(θ_D, χ)
1		_		$D^* \rightarrow D\gamma$	$D^* \rightarrow D\pi^0$
		1	H_{+}^{2}	$\frac{1}{2}(1 + \cos^2 \theta_D)(1 - \cos \theta_\mu)^2$	$\sin^2 \theta_D (1 - \cos \theta_\mu)^2$
	B	2	H_{-}^{2}	$\frac{1}{2}(1 + \cos^2 \theta_D)(1 + \cos \theta_\mu)^2$	$\sin^2 \theta_D (1 + \cos \theta_\mu)^2$
	OD	3	H_0^2	$2 \sin^2 \theta_D \sin^2 \theta_\mu$	$4 \cos^2 \theta_D \sin^2 \theta_\mu$
	D	4	H_+H	$4 \sin^2 \theta_D \sin^2 \theta_\mu \cos 2\chi$	$-2 \sin 2\theta_D \sin^2 \theta_\mu \cos 2\chi$
ν	π,γ		$5 H_{+}H_{0}$	$\sin 2\theta_D \sin \theta_\mu (1 - \cos \theta_\mu) \cos \chi$	$-2 \sin 2\theta_D \sin \theta_\mu (1 - \cos \theta_\mu) \cos \chi$
		6	$5 HH_0$	$-\sin 2\theta_D \sin \theta_\mu (1 + \cos \theta_\mu) \cos \chi$	$2\sin 2\theta_D \sin \theta_\mu (1 + \cos \theta_\mu) \cos \chi$

pseudoscalar case similar: (form factor here $\mathcal{G}(w)$)

$$\frac{\mathrm{d}\Gamma(B \to D\mu\nu)}{\mathrm{d}w} = \frac{G_{\mathrm{F}}^2 m_D^3}{48\pi^3} (m_B + m_D)^2 \eta_{EW}^2 |V_{cb}|^2 (w^2 - 1)^{3/2} |\mathcal{G}(w)|^2$$

data sample, selection

analysis based on 7 and 8 TeV data (3 fb^{-1})

• use $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ decays

- trigger on high $p_T \mu$ associated with 1-3 charged displaced tracks
- offline, select μ^+ plus three tracks consistent with $D^-_{(s)} \to K^+ K^- \pi^$
 - $m_{K^+K^-} \in [1008, 1032] \text{ MeV}/c^2$ to suppress BG under $D_{(s)}^-$ peaks, and keep signal and reference channel kinematics similar
 - \blacksquare $m_{K^+K^-\pi^-}$ mass in D^- or D_s^- range
- produce clean $D_{(s)}^{-}$ peaks by optimising selection using track/vertex quality, vertex displacement, p_T and PID criteria
- measure yields relative to reference decays $(B^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu})$
- only partial reconstruction: $D^{-}_{(s)} (\rightarrow \phi(K^+K^-)\pi^-)\mu^+$
 - cross-contamination between $D^-\mu^+$ and $D_s^-\mu^+$ samples below 0.1% (based on simulation)
 - combinatorial BG from same-sign $D^-_{(s)}\mu^-$ candidates

veto misreconstructed/mis-IDed $B_s^0 \rightarrow \psi^{(')} (\rightarrow \mu^+ \mu^-) \phi (\rightarrow K^+ K^-)$, $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \mu^- \overline{\nu}_\mu X$ and $B_{(s)}^0 \to D_{(s)}^- \pi^+$

partial reconstruction

- final state not fully reconstructed (γ/π^0 from D_s^{*-} and also ν_{μ})
- separate signal/remaining BGs in
 - $p_{\perp}(D_{s}^{-}\mu^{+})$ (transverse to the B_{s}^{0} flight direction)
 - $m_{corr} = \sqrt{m^2 (D_s^- \mu^+) + p_{\perp}^2 (D_s^- \mu^+)} + p_{\perp} (D_s^- \mu^+)$
- white dashed line: cut for analysis (dashed-dotted for systematics)

partial reconstruction

- cannot fully reconstruct recoil variable w (for form factors!)
 - but $p_{\perp}(D_s^-)$ is a good proxy (white line: average)
 - $p_{\perp}(D_s^-)$ also has some small correlation with helicity angles $\cos \theta_D$ and $\cos \theta_{\mu}$

analysis strategy

signal and reference yields from fit to 2D distribution of p_{\perp} , m_{corr}

- use B_s^0 modes are signal
 - easier LQCD calculation due to heavier s quark
 - FF theory calculations available for whole q^2 spectrum
 - less contamination due to less contamination from partially reconstructed decays)
- 2D templates from simulation (signal, reference decays and physics bkg) and same-sign data (combinatorial bkg)
 - floating FF parameters used to rebuild the 2D templates for signal and reference decays at each fit iteration
- $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ yields expressed as a function of $|V_{cb}|$ by integrating over the respective differential decay rates (equations in 2 slides)
 - FF described by either the CLN or BGL parametrization, with some parameters constrained to their LQCD determinations
- all other yields left free to float in the fit

 $|V_{cb}|$ from $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$

analysis strategy

analysis strategy illustration

LHCb

i first, fit reference channel, keeping total signal yields floating $N_{ref}^{(*)}$

- $N^{(*)} = \frac{N_{ref}^{(*)}\xi^{(*)}\mathscr{K}^{(*)}}{\mathscr{R}(r^0 \to D^{(*)} \mu^+ \gamma_n)}$, with $\xi^{(*)}$ efficiency ratio signal/reference mode
- $K = \frac{f_s}{f_d} \frac{\mathscr{B}(D_s^- \to K^+ K^- \pi^-)}{\mathscr{B}(D^- \to K^+ K^- \pi^-)}$ and $K^* = \frac{f_s}{f_d} \frac{\mathscr{B}(D_s^- \to K^+ K^- \pi^-)}{\mathscr{B}(D^* \to D^- X)\mathscr{B}(D^- \to K^+ K^- \pi^-)}$ take a f_s/f_d measurement from an independent data sample

Sac

results

external inputs (experimental/theory, preliminary):

Parameter	Value	Parameter
$f_s/f_d \times b(D_s^- \to K^-K^+\pi^-) \times \tau [p_s]$	0.01913 ± 0.00076	new
$\mathscr{B}(D^- \rightarrow K^- K^+ \pi^-)$	0.00993 ± 0.00024	$h_A^{\prime L \eta}(1)$
$\mathscr{B}(D^{*-} \rightarrow D^{-}X)$	0.323 ± 0.006	CLN parametrisation
$\mathscr{B}(B^0 \rightarrow D^- \mu^+ \nu \mu)$	0.0231 ± 0.0010	\$ (0)
$\mathscr{B}(B^0 \to D^{*-}\mu^+\nu\mu)$	0.0505 ± 0.0014	$\rho^{-}(D_{S})$
B_s^0 mass [GeV/ c^2]	5.36688 ± 0.00017	G(0)
D_s^- mass [GeV/ c^2]	1.96834 ± 0.00007	² d ₁
D_s^{*-} mass [GeV/ c^2]	2.1122 ± 0.0004	<i>a</i> ₂

preliminary, [LHCb-PAPER-2019-041] in preparation

Value 1.0066 ± 0.0050 0.902 ± 0.013

 1.073 ± 0.037 1.299 ± 0.051

 1.072 ± 0.037 -0.0117 ± 0.0081 -0.239 ± 0.048

preliminary result:

results

CLN form factor fit

systematics

	Uncertainty													
		CLN parametrization					BGL parametrization							
	$ V_{cb} $	$\rho^{2}(D_{s}^{-})$	$\mathcal{G}(0)$	$\rho^2(D_s^{*-})$	$R_1(1)$	$R_2(1)$	Vcb	d_1	d_2	$\mathcal{G}(0)$	b_1	C1	a_0	a_1
Source	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-1}]$	$[10^{-1}]$	$[10^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-2}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-1}]$
$f_s/f_d \times \mathscr{B}(D_s^- \to K^+ K^- \pi^-)(\times \tau)$	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.3	0.0	0.2	0.1
$\mathcal{B}(D^- \rightarrow K^- K^+ \pi^-)$	0.5	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.3	0.0	0.2	0.1
$\mathcal{B}(D^{*-} \rightarrow D^{-}X)$	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.2	0.0	0.1	0.5	0.2	0.5	0.3
$\mathcal{B}(B^0 \rightarrow D^- \mu^+ \nu_\mu)$	0.4	0.1	0.3	0.1	0.2	0.1	0.5	0.6	0.1	0.1	1.3	0.4	1.1	0.7
$\mathscr{B}(B^0 \rightarrow D^{*-}\mu^+\nu_{\mu})$	0.3	0.1	0.2	0.1	0.1	0.1	0.2	0.4	0.1	0.1	0.8	0.3	0.7	0.4
$m(B_s^0), m(D^{(*)-})$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.2	0.1
η_{EW}	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.2	0.1
$h_{A_1}(1)$	0.3	0.1	0.2	0.1	0.1	0.1	0.3	0.4	0.1	0.1	0.9	0.3	0.8	0.5
External inputs (ext)	1.2	0.1	0.4	0.1	0.2	0.1	1.2	0.7	0.2	0.8	1.3	0.6	0.8	0.8
$D^- \rightarrow K^+ K^- \pi^-$ model	0.8	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Background	0.4	3.2	2.2	0.5	0.9	0.7	0.1	4.9	1.5	2.3	6.9	2.0	5.2	2.0
Fit bias	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	1.8	0.4	1.6	0.4
Corrections to simulation	0.0	0.1	0.5	0.0	0.1	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.2	0.1
Form-factor parametrization	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Experimental (syst)	0.9	3.2	2.2	0.5	0.9	0.7	0.9	4.9	1.5	2.3	7.2	2.1	5.4	2.0
Statistical (stat)	0.6	4.7	3.4	1.7	2.5	1.6	0.8	7.4	4.7	3.4	6.8	2.2	8.6	2.6

preliminary, [LHCb-PAPER-2019-041] in preparation

a largest systematic uncertainties on $|V_{cb}|$ from f_s/f_d and $D^-_{(s)} \rightarrow K^+ K^- \pi^-$ model

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

 $|V_{ch}|$ from $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu}$ summary

summary

- \blacksquare novel approach for exclusive determination of $|V_{ch}|$:
 - exploit ratio $B_s^0 \rightarrow D_s^{(*)-} \mu^+ \nu_{\mu} / B_d^0 \rightarrow D^{(*)-} \mu^+ \nu_{\mu}$ to cancel systematics
 - template-based fit in $m_{corr} p_{\perp}(D_{(s)}^{-})$ plane
 - helps to suppess BGs
 - express form-factor dependence in terms of observed quantities

 $|V_{cb}|$ (CLN) = $(41.4 \pm 0.6 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 1.2 \text{ (ext)}) \times 10^{-3}$

 $|V_{ch}|$ (BGL) = $(42.3 \pm 0.8 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 1.2 \text{ (ext)}) \times 10^{-3}$ $\frac{\mathscr{B}(B_{3}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu})}{\mathscr{B}(B^{0} \rightarrow D^{-} \mu^{+} \nu_{\mu})} = 1.093 \pm 0.054 \text{ (stat)} \pm 0.060 \text{ (syst)} \pm 0.051 \text{ (ext)}$ $\frac{\mathscr{B}(B_{s}^{0} \to D_{s}^{s-} \mu^{+} \nu_{\mu})}{\mathscr{B}(B_{s}^{0} \to D^{s-} \mu^{+} \nu_{\mu})} = 1.059 \pm 0.047 \text{ (stat)} \pm 0.074 \text{ (syst)} \pm 0.053 \text{ (ext)}$

preliminary, [LHCb-PAPER-2019-041] in preparation

- tension with inclusive average reduced
- consistent results from both FF parametrisations!
- stay tuned: paper will come out soon

preliminary. [LHCb-PAPER-2019-041] in preparation

26/28 lanuary 8th. 2020

conclusion

conclusion

January 8th, 2020 27 / 28

æ.

LHCb continues to provide precision results in wide-ranging topics

- precision CKM physics
- spectroscopy

...

stay tuned:

- run 2 data set is being more fully exploited by analyses
- we're also busy building and commissioning the LHCb Upgrade
 - full detector read out at 40 MHz with higher pile-up
 - full software trigger running at full rate, important especially for hadronic channels
 - hope for an order of magnitude more in statistics

