Belle II at SuperKEKB, Status and Prospects

Zdenek Dolezal Charles University Prague for Belle II

KEK High Energy Accelerator Reseach Organization

40x

Asymmetric energy Flavor factories

- e⁺e⁻ beams tuned at Y(4S) resonance 10.6 GeV
- 50% decays: coherent production $B^0 \overline{B}^0$
- Fully reconstruct one of the B's
- Tag the flavor of the other B

First-generation Factories

- Success culminated in 2008 Nobel prize in Physics
- Rich legacy left for next generation experiments

Motivation for another e⁺e⁻ Flavor Factory

- Precision CKM metrology → Standard Model (SM) candle
- New CP violating phases \rightarrow CP violation in *B* and *D* decays
- Any imprint of new physics in FCNC transitions?

 radiative and electroweak penguin decays
- How about charged Higgs boson? → study tree-level decay $B \rightarrow \tau \nu$ or $B \rightarrow D^{(\star)} \tau \nu$
- New physics in τ sector → search for lepton flavor violating (LFV) τdecays
- Can we probe dark matter? → hidden dark sector

Belle II @ SuperKEKB will address these and other questions with almost two orders of magnitude larger dataset than Belle+BABAR

Ordinary collision (KEKB)

SuperKEKB

Lower emittance beam

DR for LER and RF gun for HER

Nano-Beam (SuperKEKB Phase2)

Runs 1869-2047

0.4 z₀ [cm]

0.2

Interaction-point size: $6 \times 0.06 \times 150 \ \mu m^3$

Z. Dolezal Epiphany 2020

Nanobeam Scheme

		KEKB		SuperKEKB		unito
		LER	HER	LER	HER	units
Beam energy	Eb	3.5	8	4	7.007	GeV
Beam crossing angle	φ	22		83		mrad
β function @ IP	βx [*] / <mark>βy</mark>	1200/ <mark>5.9</mark>		32/ <mark>0.27</mark>	25/ <mark>0.30</mark>	mm
Beam current	lb	1.64	1.19	3.6	2.6	Α
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹

Luminosity vs Physics

Belle II Collaboration

26 countries, 113 institutions, close to 1000 collaborators

Belle II Detector

Designed to operate with a performance similar or better than Belle, but in a harsh beam background condition

Vertex Detector (VXD)

Beam Pipe DEPFET		r = 10mm
221121	Laver 1	r = 14mm
	Layer 2	r = 22mm
DSSD		
	Layer 3	r = 39mm
	Layer 4	r = 80mm
	Layer 5	r = 115mm
	Layer 6	r = 140mm

IP Beam pipe

Phase 3 PXD

2 layers of DEPFET active pixels 75 μm thick (currently 2 modules in L2 only)

4 layers of double-sided strip sensors

Factor 2 or better impact parameter resolution in spite of the lowered Lorentz boost

Central Drift Chamber (CDC)

Outer radius almost ~20% larger than at BABAR/Belle: Improved momentum resolution

Stringing 51456 wires

	Belle	Belle II
Innermost sense wire	r=88mm	r=168mm
Outermost sense wire	r=863mm	r=1111.4mm
Number of layers	50	56
Total sense wires	8400	14336
Gas	He:C ₂ H ₆	He:C ₂ H ₆
Sense wire	W(Φ30µm)	W(Φ30µm)
Field wire	Al(φ120µm)	Al(φ120µm)

A. Soffer, Taipei 2019

Particle ID (Time of Propagation)

How far have we gone?

Full Belle II detector: Mar 2019 $L_{peak} = 1.2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ $L_{int} = 10.57 \text{ fb}^{-1}$

K/π Particle Identification

BELLE2-NOTE-PL-2019-022

Track Impact Parameter Resolution

D⁰ Lifetime

BELLE2-NOTE-PL-2019-003

Good position resolution/alignment crucial!

J/Ψ Reconstruction

Dilepton invariant mass

Rediscovery of B Mesons

BELLE2-NOTE-PL-2019-028

Demonstration of Belle II's B Physics Capabilities: Modes with neutrals, and K mesons are efficiently reconstructed along with all-charged final states containing kaons and pions.

Full Event Interpretation Reconstruction (FEI) Fully reco

This machine-learning technique (BDT) brings higher reconstruction efficiency

Look for signal

Υ(4S)

B

B

First Belle II NP Search

A low-mass Z' that couples to a $\mu\mu$ or μe vertex is poorly constrained in the Z' \rightarrow invisible channel. Could be responsible for the $g_{\mu} - 2$ anomaly.

$$e^+e^- \rightarrow \mu^+\mu^- + \text{inv.}$$

 $e^+e^- \rightarrow \mu^\pm e^\mp + \text{inv.}$

Limits on $Z' \rightarrow invisible$

 $e^+e^- \rightarrow \mu^+\mu^- + \text{inv.}$ Limit on $Z'\mu\mu$ coupling for $Br(Z' \rightarrow \text{inv}) = 1$

References:

- Shuve & Yavin, PRD 89 (2014) 113004
- Galon & Zupan, JHEP 2017 (2017) 83
- Galon, Kwa, Tanedo, JHEP 2017 (2017) 64
- BABAR limits in $Z' \rightarrow \mu^+ \mu^-$ case: PRD 94 (2016) 011102

 $e^+e^- \rightarrow \mu^{\pm}e^{\mp} + \text{inv.}$ Limit on efficiency times cross section

Some theory work on the MC needed in order to extract cross-section limits

arXiv:1912.11276 Submitted to PRL

Summary

- The Belle II experiment is a powerful tool to find signs of new physics by precision measurement of huge statistics of heavy flavor decays
- From 2018, Belle II physics run has started
- First physics results: re-discovery of B meson, Z', B mixing,
- Full event interpretation
- From February 2020 beam operation restarts
- More info at student talks:

22

OThanks to Nano-beam scheme: diameter of IP beam pipe is reduced from 3cm to 2cm

Comparison with the LHCb

<i>e</i> ⁺ <i>e</i> ⁻ has advantages in…	LHCb has advantages in	
CPV in $B \rightarrow \phi K_S, \eta' K_S, \ldots$	CPV in $B \rightarrow J/\psi K_S$	
CPV in $B \rightarrow K_S \pi^0 \gamma$	Most of <i>B</i> decays not	
$B \rightarrow K \nu \nu, \tau \nu, D^{(*)} \tau \nu$	including v or γ	
Inclusive $b \rightarrow s \mu \mu$, see	Time dependent	
$\tau \rightarrow \mu \gamma$ and other LFV	measurements of B_S	
$D^0\overline{D^0}$ mixing	$B_{(s,d)} \rightarrow \mu \mu$	
	B_c and bottomed baryons	

Complementary!!

Obs	ervables	Expected the. accu-	Expected	Facility (2025)	- Ensue Delle II alessies
		racy	exp. uncertainty		From Belle II physics
UT	angles & sides			-	
ϕ_1	°]	***	0.4	Belle II	book arXiv:1808.10567
ϕ_2	°]	**	1.0	Belle II	(to appear in DTED)
ϕ_3	°]	***	1.0	LHCb/Belle II	(to appear in PTEP)
$ V_{cb} $	incl.	***	1%	Belle II	
$ V_{cb} $	excl.	***	1.5%	Belle II	Precision CKIVI metrology
$ V_{ub} $	incl.	**	3%	Belle II	0,7
$ V_{ub} $	excl.	**	2%	Belle II/LHCb	
CP	Violation			٦	
S(E	$B \rightarrow \phi K^0$)	***	0.02	Belle II	Direct and mixing-induced
S(E	$\beta ightarrow \eta' K^0$	***	0.01	Belle II	
$\mathcal{A}(I$	$B \to K^0 \pi^0) [10^{-2}]$	***	4	Belle II	CP violation in R decays
$\mathcal{A}(I$	$B \to K^+ \pi^-) \ [10^{-2}]$	***	0.20	LHCb/Belle II	ci violationini D accays
(Set	mi-)leptonic			•	-
$\mathcal{B}(E$	$B \rightarrow \tau \nu$) [10 ⁻⁶]	**	3%	Belle II	
$\mathcal{B}(E$	$\beta \rightarrow \mu \nu$) [10 ⁻⁶]	**	7%	Belle II	(Somi Montonic P docuve
R(E	$B \rightarrow D \tau \nu$)	***	3%	Belle II	(semi-jieptonic b decays
R(E	$B \rightarrow D^* \tau \nu$	***	2%	Belle II/LHCb	
Rad	liative & EW Penguins				
$\mathcal{B}(E$	$B \rightarrow X_s \gamma$)	**	4%	Belle II	
A_C	$P(B \to X_{s,d}\gamma) \ [10^{-2}]$	***	0.005	Belle II	
S(E	$B \rightarrow K_S^0 \pi^0 \gamma$	***	0.03	Belle II	Radiative & electroweak
SE	$\beta \rightarrow \rho \gamma$)	**	0.07	Belle II	
BE	$B_s \rightarrow \gamma \gamma$) [10 ⁻⁶]	**	0.3	Belle II	penguins
$\dot{\mathcal{B}(E)}$	$B \to K^* \nu \overline{\nu}$ [10 ⁻⁶]	***	15%	Belle II	
RE	$B \to K^* \ell \ell$	***	0.03	Belle II/LHCb	
Cha	rm				-
$\mathcal{B}(L$	$D_s \to \mu \nu$	***	0.9%	Belle II	
B(L	$D_s \to \tau \nu$	***	2%	Belle II	
Ac	$P(D^0 \to K_s^0 \pi^0) \ [10^{-2}]$	**	0.03	Belle II	Vibrant charm program
q/t	$D(D^0 \to K_c^0 \pi^+ \pi^-)$	***	0.03	Belle II	vibrant chann program
Ac	$_{\rm P}(D^+ \to \pi^+ \pi^0) \ [10^{-2}]$	**	0.17	Belle II	
Tau					
$\tau \rightarrow$	$\mu\gamma$ [10 ⁻¹⁰]	***	< 50	Belle II	
$\tau \rightarrow$	$e\gamma [10^{-10}]$	***	< 100	Belle II	Search of LFV tau decays
τ_	uuu [10 ⁻¹⁰]	***	< 3	Belle II/LHCh	
1 - 1					

Sub-detector installation

