Test of Lepton Universality with $\Lambda_b \rightarrow pK^-ll decays$

Carla Marin (IJCLab Orsay) on behalf of the LHCb collaboration

Epiphany Conference 7-10 January 2020, Krakow (Poland) CINIS

Introduction

Rare b-hadron decays

- FCNC sensitive to indirect effects of New Physics (NP) in loops
 - branching fractions, angular distributions, etc.
- Access to much larger scales than direct searches

Intriguing deviations in rare B decays

See talk by M. Patel

Differential BR and angular distributions

Intriguing deviations in rare B decays

See talk by M. Patel

Crucial to add more data and measure LU in other modes

pK final state provides large stats and clean signature \rightarrow test LU here!

Experimental measurement

How do we measure LU?

In the SM:

$$R_{H}=rac{BR(B
ightarrow H\mu^{+}\mu^{-})}{BR(B
ightarrow He^{+}e^{-})}=1$$

Experimentally:

$$R_H \propto rac{N(B
ightarrow H\mu^+\mu^-)}{N(B
ightarrow He^+e^-)} imes rac{\epsilon(B
ightarrow He^+e^-)}{\epsilon(B
ightarrow H\mu^+\mu^-)}$$
from mass fit from MC and calibration samples

Exploit the well tested LU in J/ ψ modes

$$r_{J/\psi} = rac{BR(B o HJ/\psi(\mu^+\mu^-))}{BR(B o HJ/\psi(e^+e^-))} = 1$$

- as stringent cross-check
- to build double ratio → cancel systematic effects

$$R_{H} = rac{N(B
ightarrow H\mu^{+}\mu^{-})}{N(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}}{N(B
ightarrow HJ/\psi(e^{+}e^{-}))} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(e^{+}e^{-}))}}{rac{\epsilon(B
ightarrow HJ/\psi(e^{+}\mu^{-}))}{\epsilon(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}}$$

Observables of interest

First test of LU with b-baryons, using $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ and $\Lambda_b \rightarrow pK^-e^+e^-$ decays:

$$R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^-e^+e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi(\to e^+e^-))} \bigg/ \frac{\mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi(\to \mu^+\mu^-))}$$

in the region:

- $0.1 < q^2 < 6 \text{ GeV/c}^4$
 - m(pK) < 2.6 GeV/c²

* Inverse definition due to expected small yields in rare electron mode

- R_{pK} is expected to be unity in the SM [Fuentes-Martin et al.]
- Complementary to $R_{K(*)}$ due to fractional baryon spin

Observables of interest

First test of LU with b-baryons, using $\Lambda_b \rightarrow pK^-\mu^+\mu^-$ and $\Lambda_b \rightarrow pK^-e^+e^-$ decays:

$$R_{pK}^{-1} = \frac{\mathcal{B}(\Lambda_b^0 \to pK^- e^+ e^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to e^+ e^-))} \bigg/ \frac{\mathcal{B}(\Lambda_b^0 \to pK^- \mu^+ \mu^-)}{\mathcal{B}(\Lambda_b^0 \to pK^- J/\psi(\to \mu^+ \mu^-))}$$

in the region:

- $0.1 < q^2 < 6 \text{ GeV/c}^4$
 - m(pK) < 2.6 GeV/c²

* Inverse definition due to expected small yields in rare electron mode

- $\Lambda_{\rm b} \rightarrow p K^- e^+ e^-$ never observed before \rightarrow first observation
- $B(\Lambda_b \rightarrow pK^-\mu^+\mu^-)$ never measured before \rightarrow first measurement

Experimental setup

Δp / p = 0.5 - 1.0% ΔIP = (15 +29/p_T[GeV]) μm

 $\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$

Electron ID ~90% for ~5% $e \rightarrow h$ mis-id probability

Muon ID ~ 97% for 1-3% $\pi{\rightarrow}\mu$ mis-id probability

Electrons at LHCb

Hardware trigger

Larger ECAL occupancy \rightarrow tighter thresholds for electrons:

- e p_T > 2700/2400 MeV in 2012/2016
- μ p_T > 1700/1800 MeV in 2012/2016 [LHCb-PUB-2014-046, 2019 JINST 14 P04013]

Mitigated by including events triggered independently of the signal (TIS)

 \rightarrow analysis performed in 2 trigger categories

Interaction with detector material

Electrons radiate much more Bremsstrahlung

Recovery procedure in place

- miss some photons and add fake ones
- ECAL resolution worse than tracking
- \rightarrow worse mass resolution for electron modes ¹²

arXiv:1912.08139

Datasets and simulation

Datasets:

- 3 fb⁻¹ at 7 and 8 TeV (Run 1)
- 1.7 fb⁻¹ at 13 TeV (Run 2)

Region of interest:

- resonant: $6 < q^2 < 11 \text{ GeV}^2/c^4$
- nonresonant: $0.1 < q^2 < 6 \text{ GeV}^2/c^4$

Simulation:

- phase-space signal samples
- final-state radiation by PHOTOS
 - agrees with full QED [Bordone et al.]

Corrections to simulation

- Hadronic pK⁻ structure: phase-space in MC, rich structure in data
 - \circ correct MC following amplitude analysis of $\Lambda_b \rightarrow pKJ/\psi$ in data (Pentaquark discovery)
- Λ_{b} kinematics and lifetime
- Particle identification (PID) response
- Event multiplicity
- Trigger response

Very good agreement between data and MC after all the corrections

Efficiency extraction from corrected MC

Phys. Rev. Lett. 115 (2015) 072001

Selection and backgrounds

- <u>Preselection</u>: p and p_{T} requirements, acceptance, PID
- <u>Mass vetoes</u>: Φ , Λ_c , D^0 , $\gamma \rightarrow e^+e^-$, $B^+ \rightarrow K^+II$ and $p \leftarrow \rightarrow K^-$ swaps
- <u>BDT</u> against combinatorial background using kinematic information
 - trained on $\Lambda_{\rm b} \rightarrow p K^{-1} M C$ and data side-band: m(pK⁻¹I) > 5825 MeV/c²
 - \circ separated BDTs for e and μ final states and run periods
 - suppress ~97% of the background while retaining ~85% of the signal
- <u>Corrected mass</u> cut against partially reconstructed backgrounds

Resonant modes: mass fit

Constrain m(ee/µµ) to known J/ ψ mass \rightarrow better mass resolution for m_{I/ ψ}

Resonant modes: $r_{J/\psi}$ cross-check

Efficiency cross-check: single ratio $r_{J/\psi}$ known to be LU

$$r_{J\!/\!\psi}^{-1} = \frac{N(\Lambda_b^0 \to pK^- J\!/\!\psi(\to e^+ e^-))}{N(\Lambda_b^0 \to pK^- J\!/\!\psi(\to \mu^+ \mu^-))} \times \frac{\epsilon(\Lambda_b^0 \to pK^- J\!/\!\psi(\to \mu^+ \mu^-))}{\epsilon(\Lambda_b^0 \to pK^- J\!/\!\psi(\to e^+ e^-))}$$

 $r^{-1}_{J/\psi} = 0.96 \pm 0.05$ including stat. and syst.

Compatible with unity

Resonant modes: $r_{J/\psi}$ cross-check

Efficiency cross-check: single ratio $r_{J/\psi}$ known to be LU

Compatible with unity and flat on kinematic and topological variables

Nonresonant modes: extracting R⁻¹_{pK}

Simultaneous fit to electron and muon mode, in various data-taking and trigger categories. Observables are fit parameters:

$$N^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-}) = r_{\mathcal{B}} \times \underbrace{\frac{N^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))}{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})}}_{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \times \underbrace{\frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}\mu^{+}\mu^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to \mu^{+}\mu^{-}))}}_{\mathcal{B}(J/\psi \to \ell^{+}\ell^{-})} \times \underbrace{\frac{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-})}{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}e^{+}e^{-})}}_{\epsilon^{i}(\Lambda_{b}^{0} \to pK^{-}J/\psi(\to e^{+}e^{-}))}$$

observables from resonant-mode fit from corrected MC from PDG

$$r_{\mathcal{B}} \equiv \mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)/\mathcal{B}(\Lambda_b^0 \to pK^-J/\psi)$$

Nonresonant modes: mass fit

Mass constraint not possible \rightarrow larger mass ranges, degradation for electrons

Systematic uncertainties

- R^{-1}_{pK} measurement statistically dominated, main systematic uncertainties:
- <u>Fit model</u> (5.2%): partially reconstructed background shape in $\Lambda_b \rightarrow pK^-ee$ • nominal: $\Lambda_b \rightarrow pK^+ee$, $K^{*-} \rightarrow K^-\pi^0$; alternative: nonresonant $\Lambda_b \rightarrow pK^-\pi^0ee$ decay
- <u>Normalisation mode</u> (~3.5%): uncertainties on yields and efficiencies
- <u>Decay model</u> (1.9%): alternative corrections from $\Lambda_{b} \rightarrow pK^{-}\mu\mu$ data
- <u>Others</u>: other corrections to simulation, m_{corr} cut efficiency, q² migration

Systematic uncertainties

Uncertainty treatment depending on whether there is correlation between data taking and trigger categories:

- <u>uncorrelated</u>: gaussian constraints included in the mass fit
 MC corrections, normalisation mode uncertainties
- <u>correlated</u>: gaussian smearing of likelihood profile
 - decay model corrections, fit model, m_{corr} cut efficiency, q² migration

Results

In $0.1 < q^2 < 6 \text{ GeV}^2/c^4$ and m(pK⁻) < 2.6 GeV/c²:

- First observation of $\Lambda_{\rm b} \rightarrow p K^{-}ee$ decay mode: significance >7 σ
- First measurement of $\Lambda_b \rightarrow pK^-\mu\mu$ branching fraction:

$$\mathcal{B}(\Lambda_b^0 \to pK^-\mu^+\mu^-)\big|_{0.1 < q^2 < 6 \,\mathrm{GeV}^2/c^4} = \left(2.65 \pm 0.14 \pm 0.12 \pm 0.29 \,{}^{+0.38}_{-0.23}\right) \times 10^{-7}$$

uncertainty dominated by knowledge of $\Lambda_{b} \rightarrow pK^{-}J/\psi$ (hadronisation fraction)

arXiv:1912.08139

Results 2

In $0.1 < q^2 < 6 \text{ GeV/c}^4$ and m(pK⁻) < 2.6 GeV/c²:

• first test of LU in b-baryons:

$$R_{pK}^{-1}\big|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 1.17^{+0.18}_{-0.16} \pm 0.07$$

• inverting likelihood profile:

$$R_{pK}|_{0.1 < q^2 < 6 \,\text{GeV}^2/c^4} = 0.86^{+0.14}_{-0.11} \pm 0.05$$

compatible with unity and previous R_H measurements

Results 3

In $0.1 < q^2 < 6 \text{ GeV/c}^4$ and m(pK⁻) < 2.6 GeV/c²:

- First observation of $\Lambda_{\rm b} \rightarrow p K^{-}ee$ decay mode: significance >7 σ
- Derived result from $B(\Lambda_b \rightarrow pK^-\mu\mu)$ and R^{-1}_{pK} :

$$\mathcal{B}(\Lambda_b^0 \to pK^-e^+e^-)\big|_{0.1 < q^2 < 6 \,\mathrm{GeV}^2/c^4} = \left(3.1 \pm 0.4 \pm 0.2 \pm 0.3 \substack{+0.4 \\ -0.3}\right) \times 10^{-7}$$

uncertainty dominated by knowledge of $\Lambda_{\rm b} \rightarrow p K^{-}J/\psi$ (hadronisation fraction)

Future prospects

LU result dominated by statistical uncertainty (~15%):

- LHCb has x2 $\Lambda_{\rm b}$ decays on tape $\rightarrow \sim 11\%$ uncertainty
- LHCb will collect 50 fb⁻¹ during Run 3 & 4 $\rightarrow \sim$ 6% uncertainty

Interpretation of the result in terms of NP is hard with current setup, with more data:

- study rich structure in m(pK) spectrum
- split low and middle q² bins: [0.1, 1] and
 [1, 6] GeV/c⁴

arXiv:1912.08139

Summary & conclusions

First test of LU performed with b-baryons R⁻¹_{pK}

- result compatible with unity
- and with previous R_H measurements
- null test of the SM \rightarrow larger stats are needed

With more data:

- study m(pK) spectrum
- split q² ranges for higher sensitivity

arXiv:1912.08139

Summary & conclusions

First test of LU performed with b-baryons R⁻¹_{pK}

- result compatible with unity
- and with previous R_H measurements
- null test of the SM \rightarrow larger stats are needed

Stay tuned!

With more data:

- study m(pK) spectrum
- split q² ranges for higher sensitivity

THANK YOU

Background vetoes

B^+	$m(K\ell^+\ell^-) < 5200 \text{ MeV}/c^2,$	all
	$m(p\ell^+\ell^-)_{p\leftarrow K} < 5200 \text{ MeV}/c^2$	
ϕ	$abs(m(pK)_{p\leftarrow K} - 1020) > 12$	all
Λ_c^+	$m(pK\ell^+) > 2320 \text{ MeV}/c^2,$	all
	$m(pK\ell^-)_{p\leftrightarrow K} > 2320 \text{ MeV}/c^2$	
D^0	$abs(m(K^-\ell^+)_{\ell \leftarrow \pi} - 1865) > 20$	all rare
swaps –	$abs(m(K^-\mu^+)_{K\leftarrow\mu} - 3097) > 35$	rare $\mu\mu$
	$m(K^-e^+)_{K\leftarrow e} < 2900 \text{ or } > 3150$	rare ee
conversions	$m(K^-e^+)_{K\leftarrow e} > 10, \ m(pe^-)_{p\leftarrow e} > 10$	all ee
clones	$\theta(K, \ell) > 0.5 \text{ mrad}, \theta(p, \ell) > 0.5 \text{ mrad}$	all

Background rejection with m_{corr}

From R_{K*} analysis [<u>IHEP 08 (2017) 055</u>]:

Resonant modes: mass fit

Constrain m(ee/µµ) to known J/ ψ mass \rightarrow better mass resolution for m_{I/ ψ}

Trends in kinematic variables

Nonresonant modes: mass fit for muons

arXiv:1912.08139

Nonresonant modes: mass fit for electrons LOI

arXiv:1912.08139

Nonresonant modes: mass fit for electrons LOE

Systematic uncertainties

Decay model systematics:

• use m(pK) spectrum from $\Lambda_b \rightarrow pK^-\mu\mu$ background-subtracted data instead of $\Lambda_b \rightarrow pK^-J/\psi$ amplitude model

m(pK) in $\Lambda_{_{b}} \rightarrow pK\mu\mu$

Systematic uncertainties: $B(\Lambda_b \rightarrow pK^-\mu\mu)$

Source	Run 1	$\operatorname{Run}2$	Correlated
Decay model	_	_	3.6
Other corrections	2.5	3.3	—
Normalisation mode	0.9	1.4	—
Fit model	_	_	1.4
Total uncorrelated	2.6	3.6	—
Total correlated	_	_	3.9

Systematic uncertainties: R⁻¹_{pK}

Source	$Run \ 1 \ LOI$	${\rm Run}~1~{\rm L0E}$	$\mathrm{Run}~2~\mathrm{L0I}$	$\mathrm{Run}~2~\mathrm{L0E}$	Correlated
Decay model	—	_	—	—	1.9
Other corrections	3.4	3.6	3.6	3.2	_
$m_{\rm corr}$ cut efficiency	_	_	_	_	0.5
q^2 migration	_	_	_	_	2.0
Normalisation mode	3.7	3.7	3.5	2.7	—
Fit model	—	_	_	_	5.2
Total correlated	—	_	_	_	5.9
Total uncorrelated	5.0	5.2	5.0	4.2	_

b→sll q² spectrum

$b \rightarrow sll$ with electrons

Theoretically, same behaviour as for muons, but experimentally:

much more similar to muons at Belle:

arXiv:1908.01848

LHC schedule

Updated R_K from LHCb

Factor 2 larger yields than in previous analysis still statistically dominated by electron mode

 $R_K = 0.846^{+0.060+0.016}_{-0.054-0.014}$

compatible with previous analysis and ~2.5σ from SM

Still x2 B decays recorded by LHCb to be analysed!

Updated R_{K*} from Belle

Main backgrounds: combinatorial, misidentification, charmonium and peaking

Measure charged and neutral modes separately and weighted average in various q² bins:

Results compatible with SM and LHCb measurement

Updated R_K from Belle

Measure charged and neutral modes separately and weighted average in q² regions: [0.1 , 4.0], [4.0 , 8.12], > 14.18, [1.0 , 6.0], > 0.1

47