Production of ν_τ neutrinos and $\bar{\nu}_\tau$ antineutrinos in fixed target experiment SHiP

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek, I. Babiarz and J. Zaremba

based on arXiv:1910.01402 [hep-ph], accepted in JHEP
Outline

1 Introduction
 - Motivation behind
 - Search for HIdden Particles (SHIP) experiment

2 Production of D_s^\pm meson
 - Leading fragmentation of charm quarks
 - Subleading fragmentation of s-quarks

3 Production of ν_τ neutrinos

4 Predictions for SHIP experiment
 - Differential cross sections
 - Number of observed neutrinos

5 Summary
ν_τ physics and more...

Tau neutrino (ν_{τ}) still the less known particle of the Standard Model

- direct measurements of ν_{τ} CC-interaction fairly recent
 - **DONUT**: 9 ± 1.5 events
 (no distinction between ν_{τ} and $\bar{\nu}_{\tau}$)
 - **OPERA**: 10 events
 (only ν_{τ}, discovery of $\nu_\mu \rightarrow \nu_\tau$ oscillations)
- IceCube (first two candidates for astrophysical ν_{τ})
- no $\bar{\nu}_{\tau}$ has ever been detected yet, making it the last missing tile of the SM

Neutrino factories:
- much more $\nu_{\tau}/\bar{\nu}_{\tau}$ events
- study the properties and cross section
- first observation of $\bar{\nu}_{\tau}$

CERN SPS ⇒ Search for Hlidden Particles (SHIP) experiment

in a broader perspective:
- Light Dark Matter search
- extraction of F_4 and F_5 structure functions
- measure the s-content of the nucleon
SHIP experiment ⇒ a general purpose fixed target facility at the CERN SPS accelerator using high intensity of the SPS 400 GeV proton beams

- to explore the domain of hidden particles (very weakly interacting non-SM particles with masses in the \(\mathcal{O}(10) \) GeV region)
- to make measurements with tau neutrinos

**abundant source of \(\nu_\tau \) and \(\bar{\nu}_\tau \) \(\implies \) direct and chain decays of \(D_\pm^s \) meson

- production of large amounts of neutrinos (not only \(\nu_\tau \))
- first direct observation of \(\bar{\nu}_\tau \)
- study \(\nu_\tau \) and \(\bar{\nu}_\tau \) properties
- test lepton flavor universality by comparing interactions of \(\nu_\mu \) and \(\nu_\tau \)

400 GeV proton beam (\(\sqrt{s} = 27.4 \) GeV) to enhance charm cross section as much as possible

- a hybrid target made of blocks of molybdenum and tungsten (materials with a short interaction length) to maximize neutrinos from charmed hadrons while minimizing those coming from pions and kaons decays
- neutrino detector with lead (\(\sim 9.6 \) tons)

far-forward production:
\[\eta \gtrsim 4.6 - 5.6 \]
Mechanisms under consideration

D_s^\pm meson from charm and strange quark fragmentation

Starting point:
Differential cross section for D_s^\pm meson production in $p + ^{96}\text{Mo}$ interactions at $\sqrt{s_{NN}} = 27.4$ GeV approximately:

$$\frac{d\sigma_{p + ^{96}\text{Mo}}}{dydp_t} = Z_{\text{Mo}} \frac{d\sigma_{pp}}{dydp_t} + (A_{\text{Mo}} - Z_{\text{Mo}}) \frac{d\sigma_{pn}}{dydp_t}$$

- shadowing (negligible)
- anti-shadowing, EMC-effect (rather small)

Two different mechanisms:

Leading (favored) fragmentation
$c \to D_s^+$ and $\bar{c} \to D_s^-$
- $c\bar{c}$-pair production cross section
- heavy-to-heavy hadronization

Subleading (unfavored) fragmentation
$s \to D_s^-$ and $\bar{s} \to D_s^+$
- s-quark and \bar{s}-antiquark production cross section
- light-to-heavy hadronization
pQCD charm quark-antiquark pair cross section

- The leading-order (LO) partonic processes for $Q\bar{Q}$ production $\Rightarrow q\bar{q}$-annihilation and gluon-gluon fusion (dominant at high energies)

- Main classes of the next-to-leading order (NLO) diagrams:
 - pair creation with gluon emission
 - flavour excitation
 - gluon splitting

- The NLO/NNLO corrections of a special importance for charm production!

collinear approach:
- state of the art for single particle spectra at NLO (FONLL, GM-VFNS)
- MC@NLO+PS for correlations
- NNLO not available for charm/bottom

k_T-factorization:
- exact kinematics from the very beginning
- correlation observables directly calculable
- some contributions even beyond the NLO available (also differentially)
Leading fragmentation of charm quarks

$c \to D_s$ transition and independent parton fragmentation

heavy-to-heavy fragmentation: $c \to D_s^+$ and $\bar{c} \to D_s^-$

independent parton fragmentation picture

- $c \to D_s$: Peterson(z), $\varepsilon = 0.05$ (rather well known from e^+e^- data)
- fragmentation fraction $P_{c \to D_s} = 5\% - 9\%$ (quite uncertain)

high energies:

- $y_H = y_q$, $p_{t,H} = z \cdot p_{t,q}$ with $z \in (0, 1)$
- can be safely used only when both m_q and m_H can be neglected
- problematic at $p_{t,H} \lesssim m_H$
- LHC charm data well described

low energies:

- $\eta_H = \eta_q$, $p_{H}^+ = z \cdot p_{q}^+$ with $z \in (0, 1)$
- light-cone scaling: $p^+ = E + p$
- energy conservation conditions:
 $E_H > m_H$ and $E_H \leq E_q$
- $m_q, m_H \to 0 \Rightarrow y_H = y_q$, p_t-scaling

Peterson(z), $\varepsilon = 0.05$ and $P_{c \to D_s} = 8\%$
Subleading fragmentation of s-quarks

pQCD strange quark/antiquark production cross section

The leading-order (LO) partonic processes for s and/or \bar{s} production \Rightarrow

- $sg \rightarrow sg, su \rightarrow su, s\bar{u} \rightarrow s\bar{u}, sd \rightarrow sd, s\bar{d} \rightarrow s\bar{d}, ss \rightarrow ss, s\bar{s} \rightarrow s\bar{s}$
- #7 different channels (+ symmetric counterparts) for quark (+ charge conjugate for antiquark)

- **Collinear factorization approach with on-shell partons**
- Special treatment of minijets at small transverse momenta:

 \[F_{\text{sup}}(p_t) = \frac{p_t^4}{(p_t^0)^2 + p_t^2} \]
 (suppression factor as adopted in PYTHIA)

- $p_t^0 = 1.5$ GeV (typical value; could be fitted e.g. to low energy charm data)

- **MMHT2014, NNPDF30, JR14 PDFs** \Rightarrow asymmetric strange sea $s(x) \neq \bar{s}(x)$

- Similar cross sections for charm and strange quark production
Subleading fragmentation of s-quarks

$s \rightarrow D_s$ fragmentation and D_s^+/D_s^- asymmetry at the LHCb

light-to-heavy fragmentation: $\bar{s} \rightarrow D_s^+$ and $s \rightarrow D_s^-$

fragmentation fraction and function completely unknown

- $c \rightarrow D_s$: Peterson(z), $\varepsilon = 0.05$ (rather well known)
- $u \rightarrow D_s$: Peterson$(1-z)$, $\varepsilon = 0.05$ (analogous to $u, d \rightarrow K$)
- $s \rightarrow D_s$: Peterson(z), $\varepsilon = 0.5$ (analogous to $b, c \rightarrow B_C$)
- fragmentation function for $s \rightarrow D_s$ shifted to intermediate z-values with respect to the standard $c \rightarrow D_s$ case
- $P_{c \rightarrow D_s} > P_{s \rightarrow D_s}$

LHCb: D_s^+/D_s^- production asymmetry data:

- $s \rightarrow D_s$: Peterson(z), $\varepsilon = 0.5$ and $P_{s \rightarrow D_s} = 3\%$

![Graphs showing D_s^+/D_s^- production asymmetry data at the LHCb](image)
Introduction

Production of D_s^\pm meson

Production of ν_τ neutrinos

Predictions for SHIP experiment

Summary

D_s^\pm cross section for $p + ^{96}$Mo at $\sqrt{s_{NN}} = 27.4$ GeV

Theoretical computations: D_s^\pm energy distr.: MMHT2014 (left) vs. NNPDF30 (right)

leading + subleading fragmentation mechanism

A pretty much different results are obtained for the two different PDF sets, especially for large meson energies.

Our model leads to a rather small (MMHT2014 PDF) or a fairly significant (NNPDF30 PDF) contribution to the D_s meson production at large energies which comes from the s/\bar{s}-quark fragmentation.

More measurements of D_s^\pm at low energies needed to reduce uncertainties.
Introduction

Production of D_s^\pm meson

Production of ν_τ neutrinos

Predictions for SHIP experiment

Summary

$D_s \rightarrow \nu_\tau$: direct and chain decay modes

DIRECT decay: $D_{s}^{+} \rightarrow \tau^{+}\nu_{\tau}$ and $D_{s}^{-} \rightarrow \tau^{-}\overline{\nu}_{\tau}$
analogue to the standard text book cases of $\pi^{+} \rightarrow \mu^{+}\nu_{\mu}$

- spin zero particle decays isotropically in its rest frame
- $\text{BR}(D_{s}^{\pm} \rightarrow \tau^{\pm}\nu_{\tau}/\overline{\nu}_{\tau}) = 0.0548 \pm 0.0023$
- τ lepton takes almost whole energy of the D_s
- τ leptons are polarized in its direction of motion (structure of weak interaction in the SM)

CHAIN decay: $D_{s}^{+} \rightarrow \tau^{+} \rightarrow \overline{\nu}_{\tau}$ and $D_{s}^{-} \rightarrow \tau^{-} \rightarrow \nu_{\tau}$

many possible decay channels \Rightarrow all included

- 35% leptonic and 65% semi-leptonic modes
- all confirmed decays lead to production of ν_{τ} ($\overline{\nu}_{\tau}$)
- we assume that $\overline{\nu}_{\tau} = \overline{\nu}_{D_s}$ and $\overline{\nu}_{D_s}$
- and polarization of τ in its rest frame is 100 %.
- we use TAUOLA Monte Carlo code

both, direct and chain decay modes lead to symmetric production of ν_{τ} and $\overline{\nu}_{\tau}$

$\nu_{\tau}/\overline{\nu}_{\tau}$ asymmetry might appear only as a result of D_{s}^{+}/D_{s}^{-} asymmetry
The energy dependent **FLUX OF NEUTRINOS** can be written as:

\[
\Phi_{\nu_\tau/\bar{\nu}_\tau}(E) = \frac{N_p}{\sigma_{pA}} d\sigma_{pA \to \nu_\tau}(E)/dE ,
\]

- \(N_p \) is integrated number of beam protons \((N_p = 2 \times 10^{20}\) (current SHiP project)
- \(\sigma_{pA} = A \cdot \sigma_{pN} \) \(\Rightarrow\) crucial quantity, where \(\sigma_{pN} \) is the inelastic hadronic cross section per nucleon on a target with \(A \) nucleons
- \(\sigma_{pN} \) for molybdenum target is rather uncertain (usually 10-20 \(\text{mb} \))

The above formula can be used to **estimate number of \(\nu_\tau \) and \(\bar{\nu}_\tau \) produced at the beam dump** \(\Rightarrow\)

for the decays of \(D_s \) meson produced from charm quark fragmentation it reads:

\[
N_{\nu_\tau} = 2 \frac{N_p}{\sigma_{pA}} \sigma_{pA \to \nu_\tau} \chi = 2 \frac{N_p}{\sigma_{pN}} \sigma_{pp \to c\bar{c}\chi} \text{BR}(D_s \to \tau) \text{P}(c \to D_s)
\]

- the factor of 2 accounts for neutrinos from the direct decay of \(D_s^+ \) and neutrinos from the chain decay of \(D_s^- \)
- \(\text{P}(c \to D_s) = 8\% \), \(\text{BR}(D_s \to \tau) = 0.0548 \), \(\sigma_{pp \to c\bar{c}\chi} = 10 \mu \text{b} \) and \(\sigma_{pN} = 20 \text{ mb} \)
- we get \(N_{\nu_\tau} = 1.32 \times 10^{15} \) (five years run)

... only a part of the \(\nu_\tau/\bar{\nu}_\tau \) produced at beam dump will be then detected (observed)
Detection of the ν_τ and $\bar{\nu}_\tau$ produced at the beam dump

Neutrino detector at SHIP experiment: a dedicated Pb-target was proposed (ECC brick)

number of neutrinos/antineutrinos observed in the target:

$$N^\text{target}_{\nu_\tau/\bar{\nu}_\tau} = \int dE \Phi_{\nu_\tau/\bar{\nu}_\tau}(E) P^\text{target}_{\nu_\tau/\bar{\nu}_\tau}(E)$$

where $P^\text{target}_{\nu_\tau/\bar{\nu}_\tau}(E) = n_{\text{cen}} \sigma_{\nu_\tau \text{Pb}}(E) d$ is a probability of interacting with the target

\Rightarrow it depends on the $\sigma_{\nu_\tau \text{Pb}}$ and $\sigma_{\bar{\nu}_\tau \text{Pb}}$ cross sections

- at not too small energies ($\sqrt{s_{\text{NN}}} > 5$ GeV) the nuclear cross sections can be obtained from elementary cross sections as: $\sigma_{\nu_\tau \text{Pb}} = Z \sigma_{\nu_\tau \text{p}} + (A - Z) \sigma_{\nu_\tau \text{n}}$
- elementary and nuclear cross sections strongly depend on $\nu_\tau/\bar{\nu}_\tau$ energy
- dominated by charge current DIS (contributions of nucleon resonances negligible)

- we use NuWro Monte Carlo code
- proton-target: the cross sections for ν_τ and $\bar{\nu}_\tau$ almost the same
- neutron-target: the cross sections for ν_τ and $\bar{\nu}_\tau$ quite different
- marginal difference between exact Pb-target and 82p+(208-82)n combination
Production of D_s^\pm meson

Production of ν_τ neutrinos

Predictions for SHIP experiment

Summary

Introduction

Introduction

Differential cross sections

$p + ^{96}\text{Mo}$ interactions at $\sqrt{s_{NN}} = 27.4 \text{ GeV}$

Theoretical computations: MMHT2014 PDFs \Rightarrow direct (solid) vs. chain (dashed)

FONLL leading (left) and LO subleading (right) + SHIP forward cut

- The direct decay dominates for smaller while the chain mode for larger energies
- The crosspoint is found to be between $20 - 40 \text{ GeV}$ and is slightly different for the leading and for the subleading contributions
- $\nu_\tau/\bar{\nu}_\tau$ production asymmetry in the case of the subleading mechanism

SHIP
Differential cross sections

$p + ^{96}\text{Mo}$ interactions at $\sqrt{s_{NN}} = 27.4\text{ GeV}$

Theoretical computations: NNPDF30 PDFs \Rightarrow direct (solid) vs. chain (dashed)

- FONLL leading (left) and LO subleading (right) + SHIP forward cut

- the differences of the neutrino distributions driven by the respective differences of the D_s-meson distributions
- NNPDF30 PDF \Rightarrow smaller leading and larger subleading contribution (especially at larger energies $E_{lab} > 150\text{ GeV}$)
- NNPDF30 PDF \Rightarrow larger $\nu_\tau/\bar{\nu}_\tau$ production asymmetry
Introduction

Production of D_s^\pm **meson**

Production of ν_τ **neutrinos**

Predictions for SHiP experiment

Summary

Differential cross sections

$p + ^{96}\text{Mo}$ interactions at $\sqrt{s_{NN}} = 27.4 \text{ GeV}$

Theoretical computations: collinear PDFs \Rightarrow MMHT2014 (left) vs. NNPDF30 (right)

leading/subleading (FONLL/LO) + direct decay + chain decay + SHiP forward cut

- two different scenarios for the two different PDF sets
- the MMHT2014 PDFs set leads to a negligible subleading contribution in the whole energy range while the NNPDF30 PDFs set provides the subleading contribution to be dominant at larger energies ($E_{lab} > 120 \text{ GeV}$)
- if such distributions could be measured by the SHiP experiment then they could be useful to constrain the PDFs in the purely known kinematical region.
Introduction

Production of D_s^{\pm} meson

Production of ν_τ neutrinos

Predictions for SHIP experiment

Summary

Differential cross sections

$p + ^{96}$Mo interactions at $\sqrt{s_{NN}} = 27.4$ GeV

SHIP

Theoretical computations: charm cross section \Rightarrow FONLL (left) vs. k_T-factorization (right)

leading/subleading + direct decay + chain decay + SHIP forward cut

\[D_s^+ + D_s \rightarrow \nu_\tau + \bar{\nu}_\tau \]

\[\sqrt{s} = 27.4 \text{ GeV} \]

- Direct + chain
- SHIP: $\eta_\nu > 5.3$
- MMHT2014 PDF

- Leading (dashed)
- Subleading (dotted)
- Sum (solid)

- Direct + chain
- SHIP: $\eta_\nu > 5.3$
- LO coll. MMHT2014 PDF + k_T-fact. KMR-MMHT2014lo uPDF

- Leading (dashed)
- Subleading (dotted)
- Sum (solid)

- Subleading $s \rightarrow D_s$ contribution the same in both figures
- k_T-factorization leads to a slightly smaller cross sections for the leading component which makes the subleading contribution even more important
- Shapes of the FONLL and k_T-factorization leading distributions very similar
Number of observed neutrinos

Number of observed ν_τ per interval of (laboratory) energy

Theoretical computations:

FONLL charm + Peterson FF + direct and chain decay + SHIP forward cut

![Graphs showing theoretical predictions](image)

- number of neutrinos observed in Pb-target: $N_{\nu_\tau/\bar{\nu}_\tau}^{\text{target}} = \int dE \Phi_{\nu_\tau/\bar{\nu}_\tau}(E) P^\text{target}_{\nu_\tau/\bar{\nu}_\tau}(E)$
- direct components are peaked at $E_{\text{lab}} \approx 20$ GeV
- chain components are peaked at $E_{\text{lab}} \approx 50$ GeV (similarly for the subleading mechanism)

after integrating the above integrals ...
Number of observed ν_τ and $\bar{\nu}_\tau$ for the SHiP experiment

... order of 10^3 of tau neutrino/antineutrino events at SHiP!

<table>
<thead>
<tr>
<th>Framework/mechanism</th>
<th>flavour</th>
<th>Number of observed neutrinos</th>
<th>$\nu_\tau + \bar{\nu}_\tau$</th>
<th>$\frac{\nu_\tau - \bar{\nu}\tau}{\nu\tau + \bar{\nu}_\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>FONLL + NNPDF30 NLO PDF</td>
<td>ν_τ</td>
<td>96</td>
<td>515</td>
<td>818</td>
</tr>
<tr>
<td>$c/\bar{c} \to D^\pm_s \to \nu_\tau/\bar{\nu}_\tau$</td>
<td>$\bar{\nu}_\tau$</td>
<td>27</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>LO coll. + NNPDF30 LO PDF</td>
<td>ν_τ</td>
<td>28</td>
<td>336</td>
<td>435</td>
</tr>
<tr>
<td>$s/\bar{s} \to D^\pm_s \to \nu_\tau/\bar{\nu}_\tau$</td>
<td>$\bar{\nu}_\tau$</td>
<td>22</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>FONLL + MMHT2014nlo PDF</td>
<td>ν_τ</td>
<td>277</td>
<td>1427</td>
<td>2292</td>
</tr>
<tr>
<td>$c/\bar{c} \to D^\pm_s \to \nu_\tau/\bar{\nu}_\tau$</td>
<td>$\bar{\nu}_\tau$</td>
<td>80</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>LO coll. + MMHT2014lo PDF</td>
<td>ν_τ</td>
<td>17</td>
<td>142</td>
<td>203</td>
</tr>
<tr>
<td>$s/\bar{s} \to D^\pm_s \to \nu_\tau/\bar{\nu}_\tau$</td>
<td>$\bar{\nu}_\tau$</td>
<td>7</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

- the chain contribution is significantly larger (by about factor of 7) than the direct one
- MMHT2014 PDF \Rightarrow the leading mechanism much larger than the subleading one (by about factor of 10)
- NNPDF30 PDF \Rightarrow the difference between the leading and the subleading components is much smaller (by about factor of 2).
- the $\nu_\tau/\bar{\nu}_\tau$ production asymmetry increased when the subleading contribution is taken into account.
Conclusions and outlook

- we have discussed the mechanism and cross sections for production of ν_τ and $\bar{\nu}_\tau$ in fixed target experiment SHIP for $\sqrt{s_{NN}} = 27.4$ GeV with 400 GeV proton beam and molybdenum target

- we include two different contributions of D_s meson production: the leading fragmentation of c and \bar{c} and the subleading fragmentation of s and \bar{s}.

- the cross section for c/\bar{c} production has been obtained either using the FONLL framework or in the k_T-factorization approach.

- we have predicted $\sim 800 - 2000$ tau neutrino events from charm quark fragmentation

- the subleading fragmentation may increase the probability of observing $\nu_\tau/\bar{\nu}_\tau$ neutrinos/antineutrinos by the planned SHiP fixed target experiment at CERN $\Rightarrow \sim 200 - 400$ tau neutrino events from strange quark fragmentation

- the SHiP experiment could be useful to test s/\bar{s} content of the proton.

Thank You for attention!