$\begin{array}{c|cccc} \text{Introduction} & \text{Production of } D_{\pmb{s}}^{\pm} \text{ meson} & \text{Production of } \nu_{\tau} \text{ neutrinos} & \text{Predictions for SHIP experiment} & \text{Summary} \\ 000 & 000000 & 0 & 0 \\ \end{array}$

Production of ν_{τ} neutrinos and $\overline{\nu}_{\tau}$ antineutrinos in fixed target experiment SHiP

Rafał Maciuła

Institute of Nuclear Physics PAN, Kraków, Poland

in collaboration with A. Szczurek, I. Babiarz and J. Zaremba based on arXiv:1910.01402 [hep-ph], accepted in JHEP

XXVI Cracow EPIPHANY Conference, LHC Physics: Standard Model and Beyond, 7-10 January 2020, Krakow, Poland

Introduction	Production of D [±] meson	Production of ν_{τ} neutrinos	Predictions for SHIP experiment	Summary O
Outline				

- Motivation behind
- Search for HIdden Particles (SHIP) experiment

2 Production of D_s^{\pm} meson

- Leading fragmentation of charm quarks
- Subleading fragmentation of *s*-quarks

3 Production of $u_{ au}$ neutrinos

- 4 Predictions for SHIP experiment
 - Differential cross sections
 - Number of observed neutrinos

Tau neutrino $(
u_{ au})$ still the less known particle of the Standard Model

- direct measurements of ν_τ CC-interaction fairly recent
 - DONUT: 9 \pm 1.5 events (no distinction between ν_{τ} and $\overline{\nu}_{\tau}$)
 - OPERA: 10 events (only ν_{τ} , discovery of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations)
- IceCube (first two candidates for astrophysical $u_{ au}$)
- no $\overline{\nu}_{\tau}$ has ever been detected yet, making it the last missing tile of the SM

Neutrino factories:

- much more $\nu_{\tau}/\overline{\nu}_{\tau}$ events
- study the properties and cross section
- first observation of $\overline{\nu}_{\tau}$

 $\textbf{CERN SPS} \Rightarrow \textbf{Search for HIdden Particles (SHIP) experiment}$

in a broader perspective:

- Light Dark Matter search
- extraction of F₄ and F₅ structure functions
- measure the s-content of the nucleon

 $\begin{array}{ccc} {\rm Production \ of \ } D_{\rm s}^{\pm} \ {\rm meson} & {\rm Production \ of \ } \nu_{\tau} \ {\rm neutrinos} & {\rm Predictions \ for \ SHIP \ experiment} & {\rm Summary} \\ {\rm 000000} & {\rm 000} & {\rm 000000} & {\rm 0} \end{array}$

Search for HIdden Particles (SHIP) experiment

Introduction

Tau neutrino factory in fixed-target experiment SHIP

$\frac{\text{SHIP experiment}}{\text{using high intensity of the SPS 400 GeV proton beams}} \Rightarrow \text{ a general purpose fixed target facility at the CERN SPS accelerator}$

- to explore the domain of hidden particles (very weakly interacting non-SM particles with masses in the O(10) GeV region)
- to make measurements with tau neutrinos

abundant source of $u_{ au}$ and $\overline{\nu}_{ au} \Longrightarrow$ direct and chain decays of D_s^{\pm} meson

- production of large amounts of neutrinos (not only ν_{τ})
- first direct observation of
 *ν*_τ
- study $u_{ au}$ and $\overline{
 u}_{ au}$ properties
- test lepton flavor universality by comparing interactions of ν_{μ} and ν_{τ}
- 400 GeV proton beam ($\sqrt{s} = 27.4$ GeV) to enhance charm cross section as much as possible
- a hybrid target made of blocks of molybdenum and tungsten (materials with a short interaction length) to maximize neutrinos from charmed hadrons while minimizing those coming from pions and kaons decays
- neutrino detector with lead (~ 9.6 tons)

Production of $D_{\boldsymbol{s}}^{\pm}$ meson

Production of ν_{τ} neutrinos

Predictions for SHIP experiment Summary

Mechanisms under consideration

D_s^{\pm} meson from charm and strange quark fragmentation

Starting point:

Differential cross section for D_s^{\pm} meson production in $p + {}^{96}$ Mo interactions at $\sqrt{s_{NN}} = 27.4$ GeV

approximately:

$$\frac{d\sigma_{p+96_{Mo}}}{dydp_t} = Z_{Mo} \frac{d\sigma_{pp}}{dydp_t} + (A_{Mo} - Z_{Mo}) \frac{d\sigma_{pn}}{dydp_t}$$

- shadowing (negligible)
- anti-shadowing, EMC-effect (rather small)

Two different mechanisms:

Leading (favored) fragmentation $c \rightarrow D_s^+$ and $\bar{c} \rightarrow D_s^-$

- cc̄-pair production cross section
- heavy-to-heavy hadronization

Subleading (unfavored) fragmentation

- $s \rightarrow D_s^-$ and $\bar{s} \rightarrow D_s^+$
 - *s*-quark and *s*-antiquark production cross section
 - light-to-heavy hadronization

• The leading-order (LO) partonic processes for $Q\overline{Q}$ production $\Rightarrow q\overline{q}$ -annihilation and gluon-gluon fusion (dominant at high energies)

• Main classes of the next-to-leading order (NLO) diagrams:

the NLO/NNLO corrections of a special importance for charm production!

collinear approach:

- stat of the art for single particle spectra at NLO (FONLL, GM-VFNS)
- MC@NLO+PS for correlations
- NNLO not available for charm/bottom

k_T-factorizaton:

- exact kinematics from the very beginning
- correlation observables directly calculable,
- some contributions even beyond the NLO available (also differentially)

Production of D_s^{\pm} meson

Production of ν_{τ} neutrinos

Predictions for SHIP experiment Summary

Leading fragmentation of charm quarks

$c ightarrow D_s$ transition and independent parton fragmentation

heavy-to-heavy fragmentation: $c \rightarrow D_s^+$ and $\bar{c} \rightarrow D_s^-$

independent parton fragmentation picture

- $c \rightarrow D_s$: Peterson(z), $\varepsilon = 0.05$ (rather well known from e^+e^- data)
- fragmentation fraction $P_{c \rightarrow D_s} = 5 9\%$ (quite uncertain)

high energies:

- $y_H = y_q$, $p_{t,H} = z \cdot p_{t,q}$ with $z \in (0,1)$
- can be safely used only when both m_q and m_H can be neglected
- problematic at $p_{t,H} \lesssim m_H$
- LHC charm data well described

Peterson(z),
$$\varepsilon = 0.05$$
 and $P_{c \rightarrow D_s} = 8\%$

low energies:

- $\eta_H = \eta_q$, $p_H^+ = z \cdot p_q^+$ with $z \in (0, 1)$
- light-cone scaling: $p^+ = E + p$
- energy conservation conditions: $E_H > m_H$ and $E_H \le E_q$
- $m_q, m_H \rightarrow 0 \Rightarrow y_H = y_q, p_t$ -scaling

low energy charm data slightly underestimated

strange quark y

charm guark y

 $\begin{array}{ccc} {\rm Production \ of \ } \nu_{\tau} \ {\rm neutrinos} & {\rm Predictions \ for \ SHIP \ experiment} & {\rm Summary} \\ {\rm 000} & {\rm 000000} & {\rm 0} \end{array}$

00 000000 Subleading fragmentation of <u>s-quarks</u>

Introduction

$s ightarrow D_s$ fragmentation and D_s^+/D_s^- asymmetry at the LHCb

light-to-heavy fragmentation: $\overline{s} \rightarrow D_s^+$ and $s \rightarrow D_s^-$

Production of D_{\bullet}^{\pm} meson

fragmentation fraction and function completely unknown

- $c \rightarrow D_s$: Peterson(z), $\varepsilon = 0.05$ (rather well known)
- $u \to D_s$: Peterson(1 z), $\varepsilon = 0.05$ (analogous to $u, d \to K$)
- $s \rightarrow D_s$: Peterson(z), $\varepsilon = 0.5$ (analogous to $b, c \rightarrow B_c$)
- fragmentation function for $s \to D_s$ shifted to intermediate *z*-values with respect to the standard $c \to D_s$ case

$$P_{c \to D_s} > P_{s \to D_s}$$

LHCb: D_s^+/D_s^- production asymmetry data:

9 / 20

D_s^{\pm} cross section for $p + {}^{96}Mo$ at $\sqrt{s_{NN}} = 27.4$ GeV

<u>Theoretical computations</u>: D_s^{\pm} energy distr.: MMHT2014 (left) vs. NNPDF30 (right) leading + subleading fragmentation mechanism

- a pretty much different results are obtained for the two different PDF sets, especially for large meson energies
- our model leads to a rather small (MMHT2014 PDF) or a fairly significant (NNPDF30 PDF) contribution to the D_s meson production at large energies which comes from the s/s-quark fragmentation
- 4

• more measurements of D_s^{\pm} at low energies needed to reduce uncertainties

Introduction Production of D_s^{\pm} meson 00 000000 Production of ν_{τ} neutrinos $\bullet \circ \circ$

Predictions for SHIP experiment Summary

$D_s ightarrow u_ au$: direct and chain decay modes

<u>DIRECT decay</u>: $D_s^+ \to \tau^+ \nu_{\tau}$ and $D_s^- \to \tau^- \overline{\nu}_{\tau}$ analogous to the standard text book cases of $\pi^+ \to \mu^+ \nu_{\mu}$

- spin zero particle decays isotropically in its rest frame
- BR $(D_s^{\pm} \to \tau^{\pm} \nu_{\tau} / \overline{\nu}_{\tau}) = 0.0548 \pm 0.0023$
- au lepton takes almost whole energy of the D_s
- τ leptons are polarized in its direction of motion (structure of weak interaction in the SM)

<u>CHAIN decay</u>: $D_s^+ \to \tau^+ \to \overline{\nu}_{\tau}$ and $D_s^- \to \tau^- \to \nu_{\tau}$ many possible decay channels \Rightarrow all included **35%** leptonic and 65% semi-leptonic modes **all confirmed decays lead to production of** ν_{τ} ($\overline{\nu}_{\tau}$) **we assume that** $\vec{v}_{\tau} = \vec{v}_{D_s}$ and $\vec{p}_{\tau} = \vec{p}_{D_s}$ and polarization of τ in its rest frame is 100 %. **we use TAUOLA Monte Carlo code**

• both, direct and chain decay modes lead to symmetric production of ν_{τ} and $\overline{\nu}_{\tau}$ • $\nu_{\tau}/\overline{\nu}_{\tau}$ asymmetry might appear only as a result of D_s^+/D_s^- asymmetry

Introduction Production of D_s^{\pm} meson Production of ν_{τ} neutrinos Predictions for SHIP experiment Summary 00 00000 0

$u_{ au}$ and $\overline{ u}_{ au}$ neutrino yield at the beam dump

The energy dependent FLUX OF NEUTRINOS can be written as:

$$\Phi_{
u_{ au}/\overline{
u}_{ au}}(E) = rac{N_p}{\sigma_{pA}} d\sigma_{pA
ightarrow
u_{ au}}(E)/dE \; ,$$

• N_p is integrated number of beam protons ($N_p = 2 \times 10^{20}$ (current SHiP project)

- $\sigma_{pA} = A \cdot \sigma_{pN} \Rightarrow$ crucial quantity, where σ_{pN} is the inelastic hadronic cross section per nucleon on a target with A nucleons
- σ_{pN} for molybdenum target is rather uncertain (usually 10-20 mb)

The above formula can be used to

estimate number of ν_{τ} and $\overline{\nu}_{\tau}$ produced at the beam dump \implies for the decays of D_s meson produced from charm quark fragmentation it reads:

$$N_{\nu_{\tau}} = 2 \frac{N_{p}}{\sigma_{pA}} \sigma_{pA \to \nu_{\tau} X} = 2 \frac{N_{p}}{\sigma_{pN}} \sigma_{pp \to c\bar{c}X} \text{ BR}(D_{s} \to \tau) \text{ P}(c \to D_{s})$$

- the factor of 2 accounts for neutrinos from the direct decay of D_s^+ and neutrinos from the chain decay of D_s^-
- $P(c \rightarrow D_s) = 8\%$, $BR(D_s \rightarrow \tau) = 0.0548$, $\sigma_{pp \rightarrow c\bar{c}X} = 10 \ \mu b$ and $\sigma_{pN} = 20 \ mb$
- we get $N_{
 u_{ au}} = 1.32 imes 10^{15}$ (five years run)

... only a part of the $u_{ au}/\overline{
u}_{ au}$ produced at beam dump will be then detected (observed)

Detection of the $u_{ au}$ and $\overline{ u}_{ au}$ produced at the beam dump

Neutrino detector at SHIP experiment: a dedicated Pb-target was proposed (ECC brick) number of neutrinos/antineutrinos observed in the target:

$$\mathsf{W}^{\mathrm{target}}_{
u_{ au}/\overline{
u}_{ au}} = \int dE \Phi_{
u_{ au}/\overline{
u}_{ au}}(E) \mathsf{P}^{\mathrm{target}}_{
u_{ au}/\overline{
u}_{ au}}(E)$$

where $P_{\nu_{\tau}/\overline{\nu_{\tau}}}^{\mathrm{target}}(E) = n_{\mathrm{cen}}\sigma_{\nu_{\tau}\mathrm{Pb}}(E)d$ is a probability of interacting with the target

 \Rightarrow it depends on the $\sigma_{\nu_{\tau}\,{\rm Pb}}$ and $\sigma_{\overline{\nu}_{\tau}\,{\rm Pb}}$ cross sections

- at not too small energies ($\sqrt{s_{NN}} > 5$ GeV) the nuclear cross sections can be obtained from elementary cross sections as: $\sigma_{\nu_{\tau}Pb} = Z\sigma_{\nu_{\tau}p} + (A Z)\sigma_{\nu_{\tau}n}$
- elementary and nuclear cross sections strongly depend on $\nu_{ au}/\overline{
 u}_{ au}$ energy
- dominated by charge current DIS (contributions of nucleon resonances negligible)

- we use NuWro Monte Carlo code
- proton-target: the cross sections for ν_{τ} and $\overline{\nu}_{\tau}$ almost the same
- neutron-target: the cross sections for ν_{τ} and $\overline{\nu}_{\tau}$ quite different
- marginal difference between exact Pb-target and 82p+(208-82)n combination

- the direct decay dominates for smaller while the chain mode for larger energies
- the crosspoint is found to be between 20 40 GeV and is slightly different for the leading and for the subleading contributions
- $\nu_{\tau}/\overline{\nu}_{\tau}$ production asymmetry in the case of the subleading mechanism

neutrino $E_{lab} (v_{\tau} \text{ or } \overline{v}_{\tau})$ [GeV]

neutrino $E_{lab} (v_{\tau} \text{ or } \overline{v}_{\tau})$ [GeV]

- the differences of the neutrino distributions driven by the respective differences of the D_s -meson distributions
- NNPDF30 PDF \Rightarrow smaller leading and larger subleading contribution (especially at larger energies $E_{lab} > 150$ GeV)
- NNPDF30 PDF \Rightarrow larger $\nu_{\tau}/\overline{\nu}_{\tau}$ production asymmetry

- two different scenarios for the two different PDF sets
- the MMHT2014 PDFs set leads to a negligible subleading contribution in the whole energy range while the NNPDF30 PDFs set provides the subleading contribution to be dominant at larger energies ($E_{\rm lab} > 120$ GeV)
- if such distributions could be measured by the SHiP experiment then they could be useful to constrain the PDFs in the purely known kinematical region.

• subleading $s \to D_s$ contribution the same in both figures

 k_T-factorizaton leads to a slightly smaller cross sections for the leading component which makes the subleading contribution even more important

shapes of the FONLL and k_T -factorization leading distributions very similar

•

Number of observed ν_{τ} per interval of (laboratory) energy

Theoretical computations:

FONLL charm + Peterson FF + direct and chain decay + SHIP forward cut

- number of neutrinos observed in Pb-target: $N_{\nu_{\tau}/\overline{\nu_{\tau}}}^{\text{target}} = \int dE \Phi_{\nu_{\tau}/\overline{\nu_{\tau}}}(E) P_{\nu_{\tau}/\overline{\nu_{\tau}}}^{\text{target}}(E)$
- direct components are peaked at $E_{
 m lab}pprox$ 20 GeV
- chain components are peaked at $E_{\rm lab} \approx 50$ GeV (similarly for the subleading mechanism)

after integrating the above integrals ...

ntroduction	Production	of	D_s^{\pm}	m

Production of ν_{τ} neutrinos

Predictions for SHIP experiment Summon o

Number of observed neutrinos

Number of observed $u_{ au}$ and $\overline{ u}_{ au}$ for the SHiP experiment

\ldots order of 10^3 of tau neutrino/antineutrino events at SHIP!

eson

Framework/mechanism	flavour	$\begin{array}{ll} \mbox{Number of observed neutrinos} \\ \mbox{direct} & \mbox{chain} & \nu_\tau + \overline{\nu}_\tau \end{array}$			$\frac{\nu_{\tau} - \overline{\nu}_{\tau}}{\nu_{\tau} + \overline{\nu}_{\tau}}$
FONLL + NNPDF30 NLO PDF $c/\bar{c} \rightarrow D_s^{\pm} \rightarrow \nu_{\tau}/\overline{\nu}_{\tau}$	$rac{ u_{ au}}{\overline{ u}_{ au}}$	96 27	515 180	818	0.49
LO coll. + NNPDF30 LO PDF $s/\overline{s} \rightarrow D_s^{\pm} \rightarrow \nu_{\tau}/\overline{\nu}_{\tau}$	$ \frac{ \nu_{ au}}{ $	28 22	336 49	435	0.67
FONLL + MMHT2014nlo PDF $c/\overline{c} ightarrow D_{s}^{\pm} ightarrow u_{ au}/\overline{ u}_{ au}$	$rac{ u_{ au}}{\overline{ u}_{ au}}$	277 80	1427 508	2292	0.49
LO coll. + MMHT2014lo PDF $s/\bar{s} \rightarrow D_s^{\pm} \rightarrow \nu_{\tau}/\overline{\nu}_{\tau}$	$ \frac{ u_{ au}}{\overline{ u}_{ au}} $	17 7	142 37	203	0.58

- the chain contribution is significantly larger (by about factor of 7) than the direct one
- MMHT2014 PDF \Rightarrow the leading mechanism much larger than the subleading one (by about factor of 10)
- NNPDF30 PDF ⇒ the difference between the leading and the subleading components is much smaller (by about factor of 2).

 $\bullet\,$ the $\nu_\tau/\overline{\nu}_\tau$ production asymmetry increased when the subleading contribution is taken into account.

- we have discussed the mechanism and cross sections for production of ν_{τ} and $\overline{\nu}_{\tau}$ in fixed target experiment SHIP for $\sqrt{s_{NN}} = 27.4$ GeV with 400 GeV proton beam and molybdenum target
- we include two different contributions of D_s meson production: the leading fragmentation of c and \bar{c} and the subleading fragmentation of s and \bar{s} .
- the cross section for c/\bar{c} production has been obtained either using the FONLL framework or in the k_T -factorization approach.
- ullet we have predicted \sim 800 2000 tau neutrino events from charm quark fragmentation
- the subleading fragmentation may increase the probability of observing $\nu_{\tau}/\bar{\nu}_{\tau}$ neutrinos/antineutrinos by the planned SHiP fixed target experiment at CERN $\Rightarrow \sim 200 - 400$ tau neutrino events from strange quark fragmentation
- the SHiP experiment could be useful to test s/\bar{s} content of the proton.

Thank You for attention!